Suppr超能文献

运动记忆被编码为内在和外在动作表示的增益场组合。

Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations.

机构信息

School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts 02138, USA.

出版信息

J Neurosci. 2012 Oct 24;32(43):14951-65. doi: 10.1523/JNEUROSCI.1928-12.2012.

Abstract

Actions can be planned in either an intrinsic (body-based) reference frame or an extrinsic (world-based) frame, and understanding how the internal representations associated with these frames contribute to the learning of motor actions is a key issue in motor control. We studied the internal representation of this learning in human subjects by analyzing generalization patterns across an array of different movement directions and workspaces after training a visuomotor rotation in a single movement direction in one workspace. This provided a dense sampling of the generalization function across intrinsic and extrinsic reference frames, which allowed us to dissociate intrinsic and extrinsic representations and determine the manner in which they contributed to the motor memory for a trained action. A first experiment showed that the generalization pattern reflected a memory that was intermediate between intrinsic and extrinsic representations. A second experiment showed that this intermediate representation could not arise from separate intrinsic and extrinsic learning. Instead, we find that the representation of learning is based on a gain-field combination of local representations in intrinsic and extrinsic coordinates. This gain-field representation generalizes between actions by effectively computing similarity based on the (Mahalanobis) distance across intrinsic and extrinsic coordinates and is in line with neural recordings showing mixed intrinsic-extrinsic representations in motor and parietal cortices.

摘要

动作可以在内在(基于身体)参考系或外在(基于世界)参考系中进行规划,理解与这些参考系相关的内部表示如何有助于运动动作的学习是运动控制中的一个关键问题。我们通过分析在单个工作空间中训练单一运动方向的视觉运动旋转后,跨越一系列不同运动方向和工作空间的泛化模式,研究了人类受试者中这种学习的内部表示。这在内在和外在参考系中对泛化函数进行了密集采样,使我们能够区分内在和外在表示,并确定它们对受过训练的动作的运动记忆的贡献方式。第一个实验表明,泛化模式反映了一种处于内在和外在表示之间的记忆。第二个实验表明,这种中间表示不可能来自于单独的内在和外在学习。相反,我们发现学习的表示是基于内在和外在坐标中局部表示的增益场组合。这种增益场表示通过根据内在和外在坐标之间的(马氏)距离有效地计算相似性,在动作之间进行泛化,并且与显示运动和顶叶皮层中混合内在-外在表示的神经记录一致。

相似文献

4
Distinct coordinate systems for adaptations of movement direction and extent.用于运动方向和幅度适应性的不同坐标系。
J Neurophysiol. 2017 Nov 1;118(5):2670-2686. doi: 10.1152/jn.00326.2016. Epub 2017 Aug 23.
5
Learning not to generalize: modular adaptation of visuomotor gain.避免泛化:视觉运动增益的模块化适应。
J Neurophysiol. 2010 Jun;103(6):2938-52. doi: 10.1152/jn.01089.2009. Epub 2010 Mar 31.
6
New visuomotor maps are immediately available to the opposite limb.新的视动图立即可用于对侧肢体。
J Neurophysiol. 2014 Jun 1;111(11):2232-43. doi: 10.1152/jn.00042.2014. Epub 2014 Mar 5.
9
Eliminating Direction Specificity in Visuomotor Learning.消除视觉运动学习中的方向特异性
J Neurosci. 2016 Mar 30;36(13):3839-47. doi: 10.1523/JNEUROSCI.2712-15.2016.

引用本文的文献

3
The cerebellum acts as the analog to the medial temporal lobe for sensorimotor memory.小脑作为感觉运动记忆的内侧颞叶的模拟物。
Proc Natl Acad Sci U S A. 2024 Oct 15;121(42):e2411459121. doi: 10.1073/pnas.2411459121. Epub 2024 Oct 7.
5
Exploration biases forelimb reaching strategies.探索偏见影响前肢伸展策略。
Cell Rep. 2024 Apr 23;43(4):113958. doi: 10.1016/j.celrep.2024.113958. Epub 2024 Mar 22.
8
Concurrent Implicit Adaptation to Multiple Opposite Perturbations.同时适应多个相反的扰动。
eNeuro. 2023 Aug 7;10(8). doi: 10.1523/ENEURO.0066-23.2023. Print 2023 Aug.
9
A double dissociation between savings and long-term memory in motor learning.运动学习中保存与长期记忆的双重分离。
PLoS Biol. 2023 Apr 27;21(4):e3001799. doi: 10.1371/journal.pbio.3001799. eCollection 2023 Apr.

本文引用的文献

4
The binding of learning to action in motor adaptation.运动适应中学习与动作的结合。
PLoS Comput Biol. 2011 Jun;7(6):e1002052. doi: 10.1371/journal.pcbi.1002052. Epub 2011 Jun 23.
9
Generalization of dynamics learning across changes in movement amplitude.动作幅度变化下动力学学习的泛化。
J Neurophysiol. 2010 Jul;104(1):426-38. doi: 10.1152/jn.00886.2009. Epub 2010 May 12.
10
Using a compound gain field to compute a reach plan.使用复合增益场计算到达计划。
Neuron. 2009 Dec 10;64(5):744-55. doi: 10.1016/j.neuron.2009.11.005.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验