Suppr超能文献

通过应用具有更长半衰期的正电子放射性核素来描绘生物学行为。

Mapping biological behaviors by application of longer-lived positron emitting radionuclides.

机构信息

Radioimmune & Inorganic Chemistry Section, ROB, NCI, NIH, Bethesda, MD 20892-1002, USA.

出版信息

Adv Drug Deliv Rev. 2013 Jul;65(8):1098-111. doi: 10.1016/j.addr.2012.10.012. Epub 2012 Nov 2.

Abstract

With the technological development of positron emission tomography (PET) and the advent of novel antibody-directed drug delivery systems, longer-lived positron-emitting radionuclides are moving to the forefront to take important roles in tracking the distribution of biotherapeutics such as antibodies, and for monitoring biological processes and responses. Longer half-life radionuclides possess advantages of convenient on-site preparation procedures for both clinical and non-clinical applications. The suitability of the long half-life radionuclides for imaging intact monoclonal antibodies (mAbs) and their respective fragments, which have inherently long biological half-lives, has attracted increased interest in recent years. In this review, we provide a survey of the recent literature as it applies to the development of nine-selected longer-lived positron emitters with half-lives of 9-140h (e.g., (124)I, (64)Cu, (86)Y and (89)Zr), and describe the biological behaviors of radionuclide-labeled mAbs with respect to distribution and targeting characteristics, potential toxicities, biological applications, and clinical translation potentials.

摘要

随着正电子发射断层扫描(PET)技术的发展和新型抗体导向药物输送系统的出现,寿命更长的正电子发射放射性核素将发挥重要作用,用于跟踪抗体等生物疗法的分布,并监测生物过程和反应。半衰期更长的放射性核素具有便于临床和非临床应用的现场制备程序的优势。近年来,长半衰期放射性核素适用于成像完整的单克隆抗体(mAbs)及其各自的片段,这些片段具有固有的长生物学半衰期,这引起了人们越来越多的兴趣。在这篇综述中,我们调查了最近的文献,这些文献涉及开发半衰期为 9-140 小时的九种选定的长寿命正电子发射体(例如,(124)I、(64)Cu、(86)Y 和(89)Zr),并描述了放射性核素标记的 mAbs 的生物学行为,包括分布和靶向特征、潜在毒性、生物应用和临床转化潜力。

相似文献

1
Mapping biological behaviors by application of longer-lived positron emitting radionuclides.
Adv Drug Deliv Rev. 2013 Jul;65(8):1098-111. doi: 10.1016/j.addr.2012.10.012. Epub 2012 Nov 2.
2
Development of Mn Labeled Trastuzumab for Extended Time Point PET Imaging of HER2.
Mol Imaging Biol. 2024 Oct;26(5):858-868. doi: 10.1007/s11307-024-01948-4. Epub 2024 Aug 27.
3
Comparison of bifunctional chelates for (64)Cu antibody imaging.
Eur J Nucl Med Mol Imaging. 2010 Nov;37(11):2117-26. doi: 10.1007/s00259-010-1506-1. Epub 2010 Jun 16.
4
Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges.
Bioconjug Chem. 2009 May 20;20(5):825-41. doi: 10.1021/bc800299f.
6
Evaluation of 64Cu-labeled bifunctional chelate-bombesin conjugates.
Bioconjug Chem. 2011 Aug 17;22(8):1729-35. doi: 10.1021/bc2002665. Epub 2011 Jul 29.
7
Imaging cancer using PET--the effect of the bifunctional chelator on the biodistribution of a (64)Cu-labeled antibody.
Nucl Med Biol. 2011 Jan;38(1):29-38. doi: 10.1016/j.nucmedbio.2010.07.003. Epub 2010 Oct 27.
9
Evaluation of bifunctional chelates for the development of gallium-based radiopharmaceuticals.
Bioconjug Chem. 2010 Mar 17;21(3):531-6. doi: 10.1021/bc900443a. Epub 2010 Feb 22.

引用本文的文献

1
Bioorthogonal Diels-Alder Click Chemistry-Based Pretargeted PET Imaging Strategy for Monitoring Programmed Death-Ligand 1 Expression.
ACS Omega. 2024 Aug 21;9(35):36969-36981. doi: 10.1021/acsomega.4c01063. eCollection 2024 Sep 3.
2
Advances of radiolabeled GRPR ligands for PET/CT imaging of cancers.
Cancer Imaging. 2024 Jan 26;24(1):19. doi: 10.1186/s40644-024-00658-y.
3
Immuno-PET: Design options and clinical proof-of-concept.
Front Med (Lausanne). 2022 Oct 14;9:1026083. doi: 10.3389/fmed.2022.1026083. eCollection 2022.
5
Expanding the PET radioisotope universe utilizing solid targets on small medical cyclotrons.
RSC Adv. 2021 Sep 21;11(49):31098-31123. doi: 10.1039/d1ra04480j. eCollection 2021 Sep 14.
7
Imaging in Tumor Immunology.
Nucl Med Mol Imaging. 2021 Oct;55(5):225-236. doi: 10.1007/s13139-021-00706-6. Epub 2021 Jul 27.
8
Production, Purification, and Applications of a Potential Theranostic Pair: Cobalt-55 and Cobalt-58m.
Diagnostics (Basel). 2021 Jul 9;11(7):1235. doi: 10.3390/diagnostics11071235.
9
Perspectives on metals-based radioimmunotherapy (RIT): moving forward.
Theranostics. 2021 Apr 15;11(13):6293-6314. doi: 10.7150/thno.57177. eCollection 2021.
10
State of the Art in Radiolabeling of Antibodies with Common and Uncommon Radiometals for Preclinical and Clinical Immuno-PET.
Bioconjug Chem. 2021 Jul 21;32(7):1315-1330. doi: 10.1021/acs.bioconjchem.1c00136. Epub 2021 May 11.

本文引用的文献

1
Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study.
J Nucl Med. 2012 Aug;53(8):1207-15. doi: 10.2967/jnumed.111.101469. Epub 2012 Jul 10.
2
Pretargeted molecular imaging and radioimmunotherapy.
Theranostics. 2012;2(5):523-40. doi: 10.7150/thno.3582. Epub 2012 May 17.
3
Radioarsenic from a portable (72)Se/(72)As generator: a current perspective.
Curr Radiopharm. 2012 Jul;5(3):264-70. doi: 10.2174/1874471011205030264.
4
PET of tumors expressing gastrin-releasing peptide receptor with an 18F-labeled bombesin analog.
J Nucl Med. 2012 Jun;53(6):947-52. doi: 10.2967/jnumed.111.100891. Epub 2012 May 8.
5
Positron emission tomography imaging of tumor angiogenesis with a 66Ga-labeled monoclonal antibody.
Mol Pharm. 2012 May 7;9(5):1441-8. doi: 10.1021/mp300019c. Epub 2012 Apr 21.
8
Bone marrow dosimetry using 124I-PET.
J Nucl Med. 2012 Apr;53(4):615-21. doi: 10.2967/jnumed.111.096453. Epub 2012 Mar 13.
9
Use of (64)Cu-labeled fibronectin domain with EGFR-overexpressing tumor xenograft: molecular imaging.
Radiology. 2012 Apr;263(1):179-88. doi: 10.1148/radiol.12111504. Epub 2012 Feb 17.
10
Novel radiochemical separation of arsenic from selenium for 72Se/72As generator.
Appl Radiat Isot. 2012 May;70(5):819-22. doi: 10.1016/j.apradiso.2012.01.016. Epub 2012 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验