Suppr超能文献

测定治疗用高能质子束中塑料闪烁探测器的淬灭校正因子。

Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Phys Med Biol. 2012 Dec 7;57(23):7767-81. doi: 10.1088/0031-9155/57/23/7767. Epub 2012 Nov 6.

Abstract

Plastic scintillation detectors (PSDs) have many advantages over other detectors in small field dosimetry due to their high spatial resolution, excellent water equivalence and instantaneous readout. However, in proton beams, the PSDs undergo a quenching effect which makes the signal level reduced significantly when the detector is close to the Bragg peak where the linear energy transfer (LET) for protons is very high. This study measures the quenching correction factor (QCF) for a PSD in clinical passive-scattering proton beams and investigates the feasibility of using PSDs in depth-dose measurements in proton beams. A polystyrene-based PSD (BCF-12, ϕ0.5 mm × 4 mm) was used to measure the depth-dose curves in a water phantom for monoenergetic unmodulated proton beams of nominal energies 100, 180 and 250 MeV. A Markus plane-parallel ion chamber was also used to get the dose distributions for the same proton beams. From these results, the QCF as a function of depth was derived for these proton beams. Next, the LET depth distributions for these proton beams were calculated by using the MCNPX Monte Carlo code, based on the experimentally validated nozzle models for these passive-scattering proton beams. Then the relationship between the QCF and the proton LET could be derived as an empirical formula. Finally, the obtained empirical formula was applied to the PSD measurements to get the corrected depth-dose curves and they were compared to the ion chamber measurements. A linear relationship between the QCF and LET, i.e. Birks' formula, was obtained for the proton beams studied. The result is in agreement with the literature. The PSD measurements after the quenching corrections agree with ion chamber measurements within 5%. PSDs are good dosimeters for proton beam measurement if the quenching effect is corrected appropriately.

摘要

塑料闪烁探测器 (PSD) 在小场剂量学中具有许多优势,因为它们具有高空间分辨率、优异的水等效性和瞬时读取功能。然而,在质子束中,PSD 会经历猝灭效应,当探测器接近质子线性能量转移 (LET) 非常高的布拉格峰时,信号水平会显著降低。本研究测量了临床被动散射质子束中 PSD 的猝灭校正因子 (QCF),并研究了 PSD 在质子束深度剂量测量中的可行性。使用基于聚苯乙烯的 PSD (BCF-12,ϕ0.5mm×4mm) 测量水模体中单能未调制质子束的深度剂量曲线,标称能量为 100、180 和 250 MeV。还使用 Markus 平面平行电离室获得相同质子束的剂量分布。根据这些结果,推导出了这些质子束的 QCF 与深度的函数关系。接下来,根据这些被动散射质子束经过实验验证的喷嘴模型,使用 MCNPX 蒙特卡罗代码计算了这些质子束的 LET 深度分布。然后可以推导出 QCF 与质子 LET 之间的关系作为经验公式。最后,将获得的经验公式应用于 PSD 测量,以获得校正后的深度剂量曲线,并将其与电离室测量进行比较。对于所研究的质子束,QCF 与 LET 之间存在线性关系,即 Birks 公式。这一结果与文献相符。经过猝灭校正后的 PSD 测量值与电离室测量值的误差在 5%以内。如果适当校正猝灭效应,PSD 是质子束测量的良好剂量计。

相似文献

1
Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams.
Phys Med Biol. 2012 Dec 7;57(23):7767-81. doi: 10.1088/0031-9155/57/23/7767. Epub 2012 Nov 6.
2
Characterizing the response of miniature scintillation detectors when irradiated with proton beams.
Phys Med Biol. 2008 Apr 7;53(7):1865-76. doi: 10.1088/0031-9155/53/7/004. Epub 2008 Mar 10.
4
Quenching correction for volumetric scintillation dosimetry of proton beams.
Phys Med Biol. 2013 Jan 21;58(2):261-73. doi: 10.1088/0031-9155/58/2/261. Epub 2012 Dec 21.
5
Passively scattered proton beam entrance dosimetry with a plastic scintillation detector.
Phys Med Biol. 2015 Feb 7;60(3):1185-98. doi: 10.1088/0031-9155/60/3/1185. Epub 2015 Jan 15.
6
Fluence correction factors in plastic phantoms for clinical proton beams.
Phys Med Biol. 2002 Sep 7;47(17):3055-71. doi: 10.1088/0031-9155/47/17/302.
7
Ionization quenching correction for a 3D scintillator detector exposed to scanning proton beams.
Phys Med Biol. 2020 Apr 6;65(7):075005. doi: 10.1088/1361-6560/ab7876.
10
Exradin W1 plastic scintillation detector for in vivo skin dosimetry in passive scattering proton therapy.
Phys Med. 2018 Mar;47:58-63. doi: 10.1016/j.ejmp.2018.02.014. Epub 2018 Feb 27.

引用本文的文献

2
A 0.05 mm diode-based single charged-particle real-time radiation detector for electron radiotherapy.
Phys Imaging Radiat Oncol. 2025 Apr 2;34:100762. doi: 10.1016/j.phro.2025.100762. eCollection 2025 Apr.
5
Ultra-high dose rate dosimetry: Challenges and opportunities for FLASH radiation therapy.
Med Phys. 2022 Jul;49(7):4912-4932. doi: 10.1002/mp.15649. Epub 2022 May 7.
6
A Millimeter-scale Single Charged Particle Dosimeter for Cancer Radiotherapy.
IEEE J Solid-State Circuits. 2020 Nov;55(11):2947-2958. doi: 10.1109/jssc.2020.3024231. Epub 2020 Sep 23.
7
Characterization of a Low-Cost Plastic Fiber Array Detector for Proton Beam Dosimetry.
Sensors (Basel). 2020 Oct 9;20(20):5727. doi: 10.3390/s20205727.
8
Producing a Beam Model of the Varian ProBeam Proton Therapy System using TOPAS Monte Carlo Toolkit.
Med Phys. 2020 Dec;47(12):6500-6508. doi: 10.1002/mp.14532. Epub 2020 Nov 8.
9
Ionization quenching correction for a 3D scintillator detector exposed to scanning proton beams.
Phys Med Biol. 2020 Apr 6;65(7):075005. doi: 10.1088/1361-6560/ab7876.
10
Sensitivity analysis of Monte Carlo model of a gantry-mounted passively scattered proton system.
J Appl Clin Med Phys. 2020 Feb;21(2):26-37. doi: 10.1002/acm2.12803. Epub 2020 Jan 3.

本文引用的文献

4
Determination of average LET of therapeutic proton beams using Al2O3:C optically stimulated luminescence (OSL) detectors.
Phys Med Biol. 2010 Sep 7;55(17):4963-76. doi: 10.1088/0031-9155/55/17/006. Epub 2010 Aug 6.
5
Characterizing the response of miniature scintillation detectors when irradiated with proton beams.
Phys Med Biol. 2008 Apr 7;53(7):1865-76. doi: 10.1088/0031-9155/53/7/004. Epub 2008 Mar 10.
6
Monte Carlo investigation of collimator scatter of proton-therapy beams produced using the passive scattering method.
Phys Med Biol. 2008 Jan 21;53(2):487-504. doi: 10.1088/0031-9155/53/2/014. Epub 2007 Dec 28.
8
Spectral discrimination of Cerenkov radiation in scintillating dosimeters.
Med Phys. 2005 Sep;32(9):3000-6. doi: 10.1118/1.2008487.
9
Development of an inorganic scintillating mixture for proton beam verification dosimetry.
Phys Med Biol. 2004 Oct 7;49(19):4637-55. doi: 10.1088/0031-9155/49/19/013.
10
Analytical linear energy transfer calculations for proton therapy.
Med Phys. 2003 May;30(5):806-15. doi: 10.1118/1.1567852.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验