Suppr超能文献

用于被动散射质子治疗中体内皮肤剂量测定的 Exradin W1 塑料闪烁探测器。

Exradin W1 plastic scintillation detector for in vivo skin dosimetry in passive scattering proton therapy.

机构信息

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.

Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA 98195, USA.

出版信息

Phys Med. 2018 Mar;47:58-63. doi: 10.1016/j.ejmp.2018.02.014. Epub 2018 Feb 27.

Abstract

In vivo skin dosimetry is desirable in passive scattering proton therapy because of the possibility of high entrance dose with a small number of fields. However, suitable detectors are needed to determine skin dose in proton therapy. Plastic scintillation detectors (PSDs) are particularly well suited for applications in proton therapy because of their water equivalence, small size, and ease of use. We investigated the utility of the Exradin W1, a commercially available PSD, for in vivo skin dosimetry during passive scattering proton therapy. We evaluated the accuracy of the Exradin W1 in six patients undergoing proton therapy for prostate cancer, as part of an Institutional Review Board-approved protocol. Over 22 weeks, we compared in vivo PSD measurements with in-phantom ionization chamber measurements and doses from the treatment planning system, resulting in 96 in vivo measurements. Temperature and ionization quenching correction factors were applied on the basis of the dose response of the PSD in a phantom. The calibrated PSD exhibited an average 7.8% under-response (±1% standard deviation) owing to ionization quenching. We observed 4% under-response at 37 °C relative to the calibration-temperature response. After temperature and quenching corrections were applied, the overall PSD dose response was within ±1% of the expected dose for all patients. The dose differences between the PSD and ionization chamber measurements for all treatment fields were within ±2% (standard deviation 0.67%). The PSD was highly accurate for in vivo skin dosimetry in passively scattered proton beams and could be useful in verifying proton therapy delivery.

摘要

体内皮肤剂量测定在被动散射质子治疗中是可取的,因为有可能用少数射野实现高的入射剂量。然而,质子治疗中需要合适的探测器来确定皮肤剂量。塑料闪烁体探测器(PSD)由于其与水等效、体积小和使用方便,特别适合于质子治疗中的应用。我们研究了市售 PSD 中的 Exradin W1 在被动散射质子治疗中用于体内皮肤剂量测定的效用。我们在一项机构审查委员会批准的方案中,对 6 名接受前列腺癌质子治疗的患者进行了评估。在 22 周以上的时间里,我们将 Exradin W1 的体内 PSD 测量结果与体模中的电离室测量结果和治疗计划系统中的剂量进行了比较,共进行了 96 次体内测量。根据 PSD 在体模中的剂量响应,应用了温度和电离猝灭校正因子。经校准的 PSD 由于电离猝灭平均表现出 7.8%的欠响应(±1%标准差)。与校准温度响应相比,我们观察到在 37°C 下有 4%的欠响应。在应用温度和猝灭校正后,所有患者的 PSD 剂量响应总体上在预期剂量的±1%以内。所有治疗野的 PSD 和电离室测量之间的剂量差异均在±2%以内(标准偏差为 0.67%)。PSD 在被动散射质子束中的体内皮肤剂量测定非常准确,可用于验证质子治疗的递送。

相似文献

1
Exradin W1 plastic scintillation detector for in vivo skin dosimetry in passive scattering proton therapy.
Phys Med. 2018 Mar;47:58-63. doi: 10.1016/j.ejmp.2018.02.014. Epub 2018 Feb 27.
2
Passively scattered proton beam entrance dosimetry with a plastic scintillation detector.
Phys Med Biol. 2015 Feb 7;60(3):1185-98. doi: 10.1088/0031-9155/60/3/1185. Epub 2015 Jan 15.
4
Characterization of the plastic scintillation detector Exradin W2 for small field dosimetry.
Med Phys. 2019 May;46(5):2468-2476. doi: 10.1002/mp.13501. Epub 2019 Apr 8.
5
Dosimetric characterization and behaviour in small X-ray fields of a microchamber and a plastic scintillator detector.
Br J Radiol. 2017 Jan;90(1069):20160596. doi: 10.1259/bjr.20160596. Epub 2016 Nov 9.
6
Determination of the quenching correction factors for plastic scintillation detectors in therapeutic high-energy proton beams.
Phys Med Biol. 2012 Dec 7;57(23):7767-81. doi: 10.1088/0031-9155/57/23/7767. Epub 2012 Nov 6.

引用本文的文献

1
Dosimetric properties of a newly developed thermoluminescent sheet-type dosimeter for clinical proton beams.
J Appl Clin Med Phys. 2021 Apr;22(4):158-165. doi: 10.1002/acm2.13222. Epub 2021 Mar 15.

本文引用的文献

2
Spectroscopic study of prompt-gamma emission for range verification in proton therapy.
Phys Med. 2017 Feb;34:7-17. doi: 10.1016/j.ejmp.2017.01.003. Epub 2017 Jan 26.
3
Characterization of a commercial scintillation detector for 2-D dosimetry in scanned proton and carbon ion beams.
Phys Med. 2017 Feb;34:48-54. doi: 10.1016/j.ejmp.2017.01.011. Epub 2017 Jan 22.
4
Passively scattered proton beam entrance dosimetry with a plastic scintillation detector.
Phys Med Biol. 2015 Feb 7;60(3):1185-98. doi: 10.1088/0031-9155/60/3/1185. Epub 2015 Jan 15.
5
Characterization of the Exradin W1 scintillator for use in radiotherapy.
Med Phys. 2015 Jan;42(1):297-304. doi: 10.1118/1.4903757.
6
In vivo proton range verification: a review.
Phys Med Biol. 2013 Aug 7;58(15):R131-60. doi: 10.1088/0031-9155/58/15/R131. Epub 2013 Jul 17.
7
In vivo dosimetry in external beam radiotherapy.
Med Phys. 2013 Jul;40(7):070903. doi: 10.1118/1.4811216.
8
In vivo dosimetry in brachytherapy.
Med Phys. 2013 Jul;40(7):070902. doi: 10.1118/1.4810943.
9
Temperature dependence of BCF plastic scintillation detectors.
Phys Med Biol. 2013 May 7;58(9):2955-67. doi: 10.1088/0031-9155/58/9/2955. Epub 2013 Apr 11.
10
Protective effect of transparent film dressing on proton therapy induced skin reactions.
Radiat Oncol. 2013 Jan 24;8:19. doi: 10.1186/1748-717X-8-19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验