Suppr超能文献

白色念珠菌生物膜形成、丝状生长和表型转换的基因本体注释改进

Improved gene ontology annotation for biofilm formation, filamentous growth, and phenotypic switching in Candida albicans.

作者信息

Inglis Diane O, Skrzypek Marek S, Arnaud Martha B, Binkley Jonathan, Shah Prachi, Wymore Farrell, Sherlock Gavin

机构信息

Department of Genetics, Stanford University Medical School, Stanford, California, USA.

出版信息

Eukaryot Cell. 2013 Jan;12(1):101-8. doi: 10.1128/EC.00238-12. Epub 2012 Nov 9.

Abstract

The opportunistic fungal pathogen Candida albicans is a significant medical threat, especially for immunocompromised patients. Experimental research has focused on specific areas of C. albicans biology, with the goal of understanding the multiple factors that contribute to its pathogenic potential. Some of these factors include cell adhesion, invasive or filamentous growth, and the formation of drug-resistant biofilms. The Gene Ontology (GO) (www.geneontology.org) is a standardized vocabulary that the Candida Genome Database (CGD) (www.candidagenome.org) and other groups use to describe the functions of gene products. To improve the breadth and accuracy of pathogenicity-related gene product descriptions and to facilitate the description of as yet uncharacterized but potentially pathogenicity-related genes in Candida species, CGD undertook a three-part project: first, the addition of terms to the biological process branch of the GO to improve the description of fungus-related processes; second, manual recuration of gene product annotations in CGD to use the improved GO vocabulary; and third, computational ortholog-based transfer of GO annotations from experimentally characterized gene products, using these new terms, to uncharacterized orthologs in other Candida species. Through genome annotation and analysis, we identified candidate pathogenicity genes in seven non-C. albicans Candida species and in one additional C. albicans strain, WO-1. We also defined a set of C. albicans genes at the intersection of biofilm formation, filamentous growth, pathogenesis, and phenotypic switching of this opportunistic fungal pathogen, which provides a compelling list of candidates for further experimentation.

相似文献

2
Relative Abundances of Candida albicans and Candida glabrata in Coculture Biofilms Impact Biofilm Structure and Formation.
Appl Environ Microbiol. 2018 Apr 2;84(8). doi: 10.1128/AEM.02769-17. Print 2018 Apr 15.
3
The Candida Genome Database (CGD), a community resource for Candida albicans gene and protein information.
Nucleic Acids Res. 2005 Jan 1;33(Database issue):D358-63. doi: 10.1093/nar/gki003.
4
Inhibition of Candida albicans biofilm formation and modulation of gene expression by probiotic cells and supernatant.
J Med Microbiol. 2016 Apr;65(4):328-336. doi: 10.1099/jmm.0.000226. Epub 2016 Feb 3.
5
The role of Bgl2p in the transition to filamentous cells during biofilm formation by Candida albicans.
Mycoses. 2017 Feb;60(2):96-103. doi: 10.1111/myc.12554. Epub 2016 Sep 5.
6
Candida albicans Sfl1/Sfl2 regulatory network drives the formation of pathogenic microcolonies.
PLoS Pathog. 2018 Sep 25;14(9):e1007316. doi: 10.1371/journal.ppat.1007316. eCollection 2018 Sep.
8
Gene Ontology and the annotation of pathogen genomes: the case of Candida albicans.
Trends Microbiol. 2009 Jul;17(7):295-303. doi: 10.1016/j.tim.2009.04.007. Epub 2009 Jul 3.
9
Cyclic strain of poly (methyl methacrylate) surfaces triggered the pathogenicity of Candida albicans.
Acta Biomater. 2023 Oct 15;170:415-426. doi: 10.1016/j.actbio.2023.08.037. Epub 2023 Aug 24.
10
Sequence resources at the Candida Genome Database.
Nucleic Acids Res. 2007 Jan;35(Database issue):D452-6. doi: 10.1093/nar/gkl899. Epub 2006 Nov 7.

引用本文的文献

1
A highly conserved tRNA modification contributes to filamentation and virulence.
Microbiol Spectr. 2024 May 2;12(5):e0425522. doi: 10.1128/spectrum.04255-22. Epub 2024 Apr 8.
2
"Sharing the matrix" - a cooperative strategy for survival in Salmonella enterica serovar Typhimurium.
BMC Microbiol. 2023 Aug 23;23(1):230. doi: 10.1186/s12866-023-02972-0.
3
Impaired amino acid uptake leads to global metabolic imbalance of Candida albicans biofilms.
NPJ Biofilms Microbiomes. 2022 Oct 13;8(1):78. doi: 10.1038/s41522-022-00341-9.
5
Relationship between Sap prevalence and biofilm formation among resistant clinical isolates of .
Afr Health Sci. 2018 Dec;18(4):1166-1174. doi: 10.4314/ahs.v18i4.37.
6
CircRNAs in the tree shrew () brain during postnatal development and aging.
Aging (Albany NY). 2018 Apr 30;10(4):833-852. doi: 10.18632/aging.101437.
7
The evolution of drug resistance in clinical isolates of Candida albicans.
Elife. 2015 Feb 3;4:e00662. doi: 10.7554/eLife.00662.
8
Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms.
PLoS Pathog. 2014 Dec 11;10(12):e1004542. doi: 10.1371/journal.ppat.1004542. eCollection 2014 Dec.
9
Fungal morphogenesis.
Cold Spring Harb Perspect Med. 2014 Nov 3;5(2):a019679. doi: 10.1101/cshperspect.a019679.

本文引用的文献

1
Motor protein Myo5p is required to maintain the regulatory circuit controlling WOR1 expression in Candida albicans.
Eukaryot Cell. 2012 May;11(5):626-37. doi: 10.1128/EC.00021-12. Epub 2012 Mar 9.
2
Portrait of Candida albicans adherence regulators.
PLoS Pathog. 2012 Feb;8(2):e1002525. doi: 10.1371/journal.ppat.1002525. Epub 2012 Feb 16.
3
A recently evolved transcriptional network controls biofilm development in Candida albicans.
Cell. 2012 Jan 20;148(1-2):126-38. doi: 10.1016/j.cell.2011.10.048.
4
Hyphal growth in human fungal pathogens and its role in virulence.
Int J Microbiol. 2012;2012:517529. doi: 10.1155/2012/517529. Epub 2011 Nov 9.
6
Development and validation of an in vivo Candida albicans biofilm denture model.
Infect Immun. 2010 Sep;78(9):3650-9. doi: 10.1128/IAI.00480-10. Epub 2010 Jul 6.
7
Analysis of gene evolution and metabolic pathways using the Candida Gene Order Browser.
BMC Genomics. 2010 May 10;11:290. doi: 10.1186/1471-2164-11-290.
8
Oral biofilm architecture on natural teeth.
PLoS One. 2010 Feb 24;5(2):e9321. doi: 10.1371/journal.pone.0009321.
9
A phenotypic profile of the Candida albicans regulatory network.
PLoS Genet. 2009 Dec;5(12):e1000783. doi: 10.1371/journal.pgen.1000783. Epub 2009 Dec 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验