UPRES EA 4275 (SPHERE) « Biostatistics, Pharmacoepidemiology and Subjective Measures in Health Sciences, University of Nantes, Nantes, France.
BMC Med Res Methodol. 2012 Nov 28;12:182. doi: 10.1186/1471-2288-12-182.
This study aims at analyzing Health related quality of life (HRQoL) data on the French general population between 1995 and 2003 using an Item Response Theory (IRT) model.
Data concerned 26388 individuals having responded to the SF36 questionnaire in 1995 or in 2003. General Health, Mental Health and Physical Functioning dimensions have been analyzed using a latent regression mixed Partial Credit Model. Differential Item Functioning (DIF) have been searched on each item between age categories, genders, regions of residency, and years of study. Mean and variance of the latent traits have been explained by the same variables, in order to quantify their impact.
Few DIF have been detected between age categories or genders. The analysis shows already known evolutions for HRQoL data: the decrease with age and the differences between genders with worst values for women. We note differences between regions, with better mean value in Paris, in the West or in the South of France, and worst values in the North and in the East. Last, a decrease of the three studied dimensions is noted between 1995 and 2003.
This study using IRT model offers several advantages compared to a classical approach based on scores. First, DIF can be taken into account. More, handling of missing data is easy, because IRT models do not required imputation of missing data. Last, analysis using IRT model is more powerful than analysis based on scores, and allow highlighting a most important number of effects.
本研究旨在使用项目反应理论(IRT)模型分析 1995 年至 2003 年法国普通人群的健康相关生活质量(HRQoL)数据。
数据涉及 1995 年或 2003 年回答 SF36 问卷的 26388 个人。使用潜在回归混合部分信用模型分析一般健康、心理健康和身体机能维度。在年龄类别、性别、居住地区和学习年限之间,搜索了每个项目的差异项目功能(DIF)。为了量化其影响,通过相同的变量解释潜在特征的均值和方差。
在年龄类别或性别之间检测到的 DIF 很少。分析显示 HRQoL 数据已经存在已知的演变:随着年龄的增长而下降,以及女性的性别差异导致最差的数值。我们注意到地区之间的差异,巴黎、西部或法国南部的平均值较好,北部和东部的平均值较差。最后,三个研究维度在 1995 年至 2003 年间都有所下降。
与基于分数的经典方法相比,本研究使用 IRT 模型具有几个优势。首先,可以考虑 DIF。更重要的是,IRT 模型易于处理缺失数据,因为不需要对缺失数据进行插补。最后,基于 IRT 模型的分析比基于分数的分析更强大,并且允许突出显示更重要的效果数量。