Suppr超能文献

电生理低频相干和跨频耦合有助于 BOLD 连接。

Electrophysiological low-frequency coherence and cross-frequency coupling contribute to BOLD connectivity.

机构信息

Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.

出版信息

Neuron. 2012 Dec 6;76(5):1010-20. doi: 10.1016/j.neuron.2012.09.033.

Abstract

Brain networks are commonly defined using correlations between blood oxygen level-dependent (BOLD) signals in different brain areas. Although evidence suggests that gamma-band (30-100 Hz) neural activity contributes to local BOLD signals, the neural basis of interareal BOLD correlations is unclear. We first defined a visual network in monkeys based on converging evidence from interareal BOLD correlations during a fixation task, task-free state, and anesthesia, and then simultaneously recorded local field potentials (LFPs) from the same four network areas in the task-free state. Low-frequency oscillations (<20 Hz), and not gamma activity, predominantly contributed to interareal BOLD correlations. The low-frequency oscillations also influenced local processing by modulating gamma activity within individual areas. We suggest that such cross-frequency coupling links local BOLD signals to BOLD correlations across distributed networks.

摘要

脑网络通常使用不同脑区血氧水平依赖 (BOLD) 信号之间的相关性来定义。尽管有证据表明,γ 波段 (30-100 Hz) 神经活动有助于局部 BOLD 信号,但区域间 BOLD 相关性的神经基础尚不清楚。我们首先根据在固定任务、无任务状态和麻醉期间区域间 BOLD 相关性的综合证据,在猴子中定义了一个视觉网络,然后在无任务状态下同时记录来自相同四个网络区域的局部场电位 (LFP)。低频振荡(<20 Hz)而不是 γ 活动,主要导致区域间 BOLD 相关性。低频振荡还通过调制单个区域内的 γ 活动来影响局部处理。我们认为,这种跨频耦合将局部 BOLD 信号与分布式网络之间的 BOLD 相关性联系起来。

相似文献

2
Crosslinking EEG time-frequency decomposition and fMRI in error monitoring.
Brain Struct Funct. 2014 Mar;219(2):595-605. doi: 10.1007/s00429-013-0521-y. Epub 2013 Feb 27.
3
Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.
Neuroimage. 2014 Jan 1;84:1018-31. doi: 10.1016/j.neuroimage.2013.09.029. Epub 2013 Sep 23.
4
Neural correlates of time-varying functional connectivity in the rat.
Neuroimage. 2013 Dec;83:826-36. doi: 10.1016/j.neuroimage.2013.07.036. Epub 2013 Jul 19.
5
The contribution of different frequency bands of fMRI data to the correlation with EEG alpha rhythm.
Brain Res. 2014 Jan 16;1543:235-43. doi: 10.1016/j.brainres.2013.11.016. Epub 2013 Nov 22.
7
The change of functional connectivity specificity in rats under various anesthesia levels and its neural origin.
Brain Topogr. 2013 Jul;26(3):363-77. doi: 10.1007/s10548-012-0267-5. Epub 2012 Dec 4.
8
Inter-individual differences in resting-state functional connectivity predict task-induced BOLD activity.
Neuroimage. 2010 May 1;50(4):1690-701. doi: 10.1016/j.neuroimage.2010.01.002. Epub 2010 Jan 15.
9
BOLD fractional contribution to resting-state functional connectivity above 0.1 Hz.
Neuroimage. 2015 Feb 15;107:207-218. doi: 10.1016/j.neuroimage.2014.12.012. Epub 2014 Dec 12.
10
Relationships between correlated spikes, oxygen and LFP in the resting-state primate.
Neuroimage. 2022 Feb 15;247:118728. doi: 10.1016/j.neuroimage.2021.118728. Epub 2021 Dec 16.

引用本文的文献

1
Rest assured: Dynamic functional connectivity and the baseline state of the human brain.
Imaging Neurosci (Camb). 2024 Nov 19;2. doi: 10.1162/imag_a_00365. eCollection 2024.
2
Flicker light stimulation induces thalamocortical hyperconnectivity with LGN and higher-order thalamic nuclei.
Imaging Neurosci (Camb). 2023 Nov 23;1. doi: 10.1162/imag_a_00033. eCollection 2023.
4
Thalamocortical interactions reflecting the intensity of flicker light-induced visual hallucinatory phenomena.
Netw Neurosci. 2025 Mar 3;9(1):1-17. doi: 10.1162/netn_a_00417. eCollection 2025.
5
Coupled oscillations orchestrate selective information transmission in visual cortex.
PNAS Nexus. 2024 Jul 31;3(8):pgae288. doi: 10.1093/pnasnexus/pgae288. eCollection 2024 Aug.
7
Mapping and comparing fMRI connectivity networks across species.
Commun Biol. 2023 Dec 7;6(1):1238. doi: 10.1038/s42003-023-05629-w.
10
Identifying the distinct spectral dynamics of laminar-specific interhemispheric connectivity with bilateral line-scanning fMRI.
J Cereb Blood Flow Metab. 2023 Jul;43(7):1115-1129. doi: 10.1177/0271678X231158434. Epub 2023 Feb 21.

本文引用的文献

1
The pulvinar regulates information transmission between cortical areas based on attention demands.
Science. 2012 Aug 10;337(6095):753-6. doi: 10.1126/science.1223082.
3
Mechanisms of gamma oscillations.
Annu Rev Neurosci. 2012;35:203-25. doi: 10.1146/annurev-neuro-062111-150444. Epub 2012 Mar 20.
4
An oscillatory mechanism for prioritizing salient unattended stimuli.
Trends Cogn Sci. 2012 Apr;16(4):200-6. doi: 10.1016/j.tics.2012.03.002. Epub 2012 Mar 19.
5
Rat brains also have a default mode network.
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3979-84. doi: 10.1073/pnas.1200506109. Epub 2012 Feb 21.
7
Spectral fingerprints of large-scale neuronal interactions.
Nat Rev Neurosci. 2012 Jan 11;13(2):121-34. doi: 10.1038/nrn3137.
8
How local is the local field potential?
Neuron. 2011 Dec 8;72(5):847-58. doi: 10.1016/j.neuron.2011.09.029.
9
A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities.
Neuron. 2011 Oct 6;72(1):153-65. doi: 10.1016/j.neuron.2011.08.018.
10
Functional roles of alpha-band phase synchronization in local and large-scale cortical networks.
Front Psychol. 2011 Sep 5;2:204. doi: 10.3389/fpsyg.2011.00204. eCollection 2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验