Suppr超能文献

基于非参数方法的全基因组预测在植物育种中涉及上位性的数量性状表现

Nonparametric method for genomics-based prediction of performance of quantitative traits involving epistasis in plant breeding.

机构信息

Department of Crop Sciences and the Illinois Plant Breeding Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America.

出版信息

PLoS One. 2012;7(11):e50604. doi: 10.1371/journal.pone.0050604. Epub 2012 Nov 30.

Abstract

Genomic selection (GS) procedures have proven useful in estimating breeding value and predicting phenotype with genome-wide molecular marker information. However, issues of high dimensionality, multicollinearity, and the inability to deal effectively with epistasis can jeopardize accuracy and predictive ability. We, therefore, propose a new nonparametric method, pRKHS, which combines the features of supervised principal component analysis (SPCA) and reproducing kernel Hilbert spaces (RKHS) regression, with versions for traits with no/low epistasis, pRKHS-NE, to high epistasis, pRKHS-E. Instead of assigning a specific relationship to represent the underlying epistasis, the method maps genotype to phenotype in a nonparametric way, thus requiring fewer genetic assumptions. SPCA decreases the number of markers needed for prediction by filtering out low-signal markers with the optimal marker set determined by cross-validation. Principal components are computed from reduced marker matrix (called supervised principal components, SPC) and included in the smoothing spline ANOVA model as independent variables to fit the data. The new method was evaluated in comparison with current popular methods for practicing GS, specifically RR-BLUP, BayesA, BayesB, as well as a newer method by Crossa et al., RKHS-M, using both simulated and real data. Results demonstrate that pRKHS generally delivers greater predictive ability, particularly when epistasis impacts trait expression. Beyond prediction, the new method also facilitates inferences about the extent to which epistasis influences trait expression.

摘要

基因组选择(GS)程序已被证明可用于通过全基因组分子标记信息来估计育种值和预测表型。然而,高维性、多重共线性以及无法有效处理上位性等问题可能会危及准确性和预测能力。因此,我们提出了一种新的非参数方法 pRKHS,它结合了有监督主成分分析(SPCA)和再生核希尔伯特空间(RKHS)回归的特点,并针对无/低上位性的性状提出了 pRKHS-NE 版本,以及针对上位性高的性状提出了 pRKHS-E 版本。该方法不是通过指定特定的关系来表示潜在的上位性,而是以非参数方式将基因型映射到表型,因此需要较少的遗传假设。SPCA 通过使用交叉验证确定的最佳标记集过滤掉低信号标记,从而减少了预测所需的标记数量。主成分是从减少的标记矩阵(称为监督主成分,SPC)中计算出来的,并作为独立变量包含在平滑样条方差分析模型中,以拟合数据。新方法与当前流行的 GS 实践方法(特别是 RR-BLUP、BayesA、BayesB 以及 Crossa 等人的 RKHS-M 方法)进行了比较,同时使用了模拟数据和真实数据。结果表明,pRKHS 通常可提供更高的预测能力,特别是当上位性影响性状表达时。除了预测之外,新方法还可以帮助推断上位性对性状表达的影响程度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc26/3511520/b5b88e06cec3/pone.0050604.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验