Suppr超能文献

MEDICASCY:一种用于预测小分子药物副作用、适应症、疗效和作用模式的机器学习方法。

MEDICASCY: A Machine Learning Approach for Predicting Small-Molecule Drug Side Effects, Indications, Efficacy, and Modes of Action.

机构信息

Center for the Study of Systems Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, N.W., Atlanta, Georgia 30332, United States.

School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, United States.

出版信息

Mol Pharm. 2020 May 4;17(5):1558-1574. doi: 10.1021/acs.molpharmaceut.9b01248. Epub 2020 Apr 13.

Abstract

To improve the drug discovery yield, a method which is implemented at the beginning of drug discovery that accurately predicts drug side effects, indications, efficacy, and mode of action based solely on the input of the drug's chemical structure is needed. In contrast, extant predictive methods do not comprehensively address these aspects of drug discovery and rely on features derived from extensive, often unavailable experimental information for novel molecules. To address these issues, we developed MEDICASCY, a multilabel-based boosted random forest machine learning method that only requires the small molecule's chemical structure for the drug side effect, indication, efficacy, and probable mode of action target predictions; however, it has comparable or even significantly better performance than existing approaches requiring far more information. In retrospective benchmarking on high confidence predictions, MEDICASCY shows about 78% precision and recall for predicting at least one severe side effect and 72% precision drug efficacy. Experimental validation of MEDICASCY's efficacy predictions on novel molecules shows close to 80% precision for the inhibition of growth in ovarian, breast, and prostate cancer cell lines. Thus, MEDICASCY should improve the success rate for new drug approval. A web service for academic users is available at http://pwp.gatech.edu/cssb/MEDICASCY.

摘要

为了提高药物发现的成功率,需要在药物发现的早期就采用一种方法,这种方法仅根据药物的化学结构输入,就能准确地预测药物的副作用、适应症、疗效和作用模式。相比之下,现有的预测方法并不能全面解决药物发现的这些方面的问题,而是依赖于从广泛的、通常不可用的实验信息中提取的特征来预测新分子。为了解决这些问题,我们开发了 MEDICASCY,这是一种基于多标签的增强随机森林机器学习方法,仅需要小分子的化学结构就可以进行药物副作用、适应症、疗效和可能的作用模式靶标预测;然而,它的性能与需要更多信息的现有方法相当,甚至更好。在对高可信度预测的回顾性基准测试中,MEDICASCY 对预测至少一种严重副作用的准确率和召回率约为 78%,对药物疗效的准确率约为 72%。对 MEDICASCY 的疗效预测进行的新型分子实验验证表明,在抑制卵巢癌、乳腺癌和前列腺癌细胞系的生长方面,准确率接近 80%。因此,MEDICASCY 应该可以提高新药审批的成功率。学术用户的网络服务可在 http://pwp.gatech.edu/cssb/MEDICASCY 上获得。

相似文献

3
FRAGSITE: A Fragment-Based Approach for Virtual Ligand Screening.FRAGSITE:基于片段的虚拟配体筛选方法。
J Chem Inf Model. 2021 Apr 26;61(4):2074-2089. doi: 10.1021/acs.jcim.0c01160. Epub 2021 Mar 16.
4
DrugClust: A machine learning approach for drugs side effects prediction.DrugClust:一种用于药物副作用预测的机器学习方法。
Comput Biol Chem. 2017 Jun;68:204-210. doi: 10.1016/j.compbiolchem.2017.03.008. Epub 2017 Mar 30.

引用本文的文献

8
Machine Learning Methods for Small Data Challenges in Molecular Science.机器学习方法在分子科学中小数据挑战中的应用。
Chem Rev. 2023 Jul 12;123(13):8736-8780. doi: 10.1021/acs.chemrev.3c00189. Epub 2023 Jun 29.

本文引用的文献

3
PubChem 2019 update: improved access to chemical data.PubChem 2019 年更新:改善化学数据获取。
Nucleic Acids Res. 2019 Jan 8;47(D1):D1102-D1109. doi: 10.1093/nar/gky1033.
5
7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验