Suppr超能文献

tRNAHis 5-甲基胞苷水平在酿酒酵母受到多种生长抑制条件的刺激时会增加。

tRNAHis 5-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae.

机构信息

Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA.

出版信息

RNA. 2013 Feb;19(2):243-56. doi: 10.1261/rna.035808.112. Epub 2012 Dec 18.

Abstract

tRNAs are highly modified, each with a unique set of modifications. Several reports suggest that tRNAs are hypomodified or, in some cases, hypermodified under different growth conditions and in certain cancers. We previously demonstrated that yeast strains depleted of tRNA(His) guanylyltransferase accumulate uncharged tRNA(His) lacking the G(-1) residue and subsequently accumulate additional 5-methylcytidine (m(5)C) at residues C(48) and C(50) of tRNA(His), due to the activity of the m(5)C-methyltransferase Trm4. We show here that the increase in tRNA(His) m(5)C levels does not require loss of Thg1, loss of G(-1) of tRNA(His), or cell death but is associated with growth arrest following different stress conditions. We find substantially increased tRNA(His) m(5)C levels after temperature-sensitive strains are grown at nonpermissive temperature, and after wild-type strains are grown to stationary phase, starved for required amino acids, or treated with rapamycin. We observe more modest accumulations of m(5)C in tRNA(His) after starvation for glucose and after starvation for uracil. In virtually all cases examined, the additional m(5)C on tRNA(His) occurs while cells are fully viable, and the increase is neither due to the GCN4 pathway, nor to increased Trm4 levels. Moreover, the increased m(5)C appears specific to tRNA(His), as tRNA(Val(AAC)) and tRNA(Gly(GCC)) have much reduced additional m(5)C during these growth arrest conditions, although they also have C(48) and C(50) and are capable of having increased m(5)C levels. Thus, tRNA(His) m(5)C levels are unusually responsive to yeast growth conditions, although the significance of this additional m(5)C remains unclear.

摘要

tRNA 高度修饰,每种都具有独特的修饰集。有几项报告表明,在不同的生长条件下和某些癌症中,tRNA 的修饰程度较低,或者在某些情况下修饰程度较高。我们之前证明,耗尽 tRNA(His)鸟苷酰转移酶的酵母菌株会积累无 G(-1)残基的未负载 tRNA(His),随后在 tRNA(His)的 C(48)和 C(50)残基处积累额外的 5-甲基胞嘧啶 (m(5)C),这是由于 m(5)C-甲基转移酶 Trm4 的活性所致。我们在这里表明,tRNA(His) m(5)C 水平的增加不需要 Thg1 的缺失、tRNA(His)的 G(-1)缺失或细胞死亡,但与不同应激条件下的生长停滞有关。我们发现,在温度敏感菌株在非允许温度下生长后,以及在野生型菌株生长到静止期、缺乏必需氨基酸饥饿或用雷帕霉素处理后,tRNA(His)的 m(5)C 水平会显著增加。在饥饿葡萄糖和饥饿尿嘧啶后,tRNA(His)中的 m(5)C 积累量更大。在几乎所有检查的情况下,tRNA(His)上额外的 m(5)C 是在细胞完全存活的情况下发生的,并且这种增加既不是由于 GCN4 途径,也不是由于 Trm4 水平增加所致。此外,增加的 m(5)C 似乎是 tRNA(His)特有的,因为在这些生长停滞条件下,tRNA(Val(AAC))和 tRNA(Gly(GCC))的额外 m(5)C 减少很多,尽管它们也具有 C(48)和 C(50),并且能够具有增加的 m(5)C 水平。因此,尽管这种额外的 m(5)C 的意义尚不清楚,但 tRNA(His)的 m(5)C 水平对酵母生长条件的反应异常敏感。

相似文献

7
Trm140 has two recognition modes for 3-methylcytidine modification of the anticodon loop of tRNA substrates.
RNA. 2017 Mar;23(3):406-419. doi: 10.1261/rna.059667.116. Epub 2016 Dec 21.
8
Minimal requirements for reverse polymerization and tRNA repair by tRNA guanylyltransferase.
RNA Biol. 2018;15(4-5):614-622. doi: 10.1080/15476286.2017.1372076. Epub 2017 Sep 29.
10
3'-5' tRNAHis guanylyltransferase in bacteria.
FEBS Lett. 2010 Aug 20;584(16):3567-72. doi: 10.1016/j.febslet.2010.07.023. Epub 2010 Jul 23.

引用本文的文献

3
A connection between the ribosome and two S. pombe tRNA modification mutants subject to rapid tRNA decay.
PLoS Genet. 2024 Jan 31;20(1):e1011146. doi: 10.1371/journal.pgen.1011146. eCollection 2024 Jan.
4
Investigations of Single-Subunit tRNA Methyltransferases from Yeast.
J Fungi (Basel). 2023 Oct 19;9(10):1030. doi: 10.3390/jof9101030.
5
The life and times of a tRNA.
RNA. 2023 Jul;29(7):898-957. doi: 10.1261/rna.079620.123. Epub 2023 Apr 13.
6
Mutually exclusive substrate selection strategy by human m3C RNA transferases METTL2A and METTL6.
Nucleic Acids Res. 2021 Aug 20;49(14):8309-8323. doi: 10.1093/nar/gkab603.
9
mRNA association by aminoacyl tRNA synthetase occurs at a putative anticodon mimic and autoregulates translation in response to tRNA levels.
PLoS Biol. 2019 May 17;17(5):e3000274. doi: 10.1371/journal.pbio.3000274. eCollection 2019 May.
10
Unbiased screen of RNA tailing activities reveals a poly(UG) polymerase.
Nat Methods. 2019 May;16(5):437-445. doi: 10.1038/s41592-019-0370-6. Epub 2019 Apr 15.

本文引用的文献

1
Yeast Trm7 interacts with distinct proteins for critical modifications of the tRNAPhe anticodon loop.
RNA. 2012 Oct;18(10):1921-33. doi: 10.1261/rna.035287.112. Epub 2012 Aug 21.
6
Yeast cells can access distinct quiescent states.
Genes Dev. 2011 Feb 15;25(4):336-49. doi: 10.1101/gad.2011311. Epub 2011 Feb 2.
7
A quantitative systems approach reveals dynamic control of tRNA modifications during cellular stress.
PLoS Genet. 2010 Dec 16;6(12):e1001247. doi: 10.1371/journal.pgen.1001247.
9
Control of translation efficiency in yeast by codon-anticodon interactions.
RNA. 2010 Dec;16(12):2516-28. doi: 10.1261/rna.2411710. Epub 2010 Oct 22.
10
tRNA biology charges to the front.
Genes Dev. 2010 Sep 1;24(17):1832-60. doi: 10.1101/gad.1956510.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验