Suppr超能文献

结合条件随机场和多假设检测用于乳腺超声图像中准确的病变分割

Combining CRF and multi-hypothesis detection for accurate lesion segmentation in breast sonograms.

作者信息

Hao Zhihui, Wang Qiang, Seong Yeong Kyeong, Lee Jong-Ha, Ren Haibing, Kim Ji-yeun

机构信息

Samsung Advanced Institute of Technology, Samsung Electronics.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 1):504-11. doi: 10.1007/978-3-642-33415-3_62.

Abstract

The implementation of lesion segmentation for breast ultrasound image relies on several diagnostic rules on intensity, texture, etc. In this paper, we propose a novel algorithm to achieve a comprehensive decision upon these rules by incorporating image over-segmentation and lesion detection in a pairwise CRF model, rather than a term-by-term translation. Multiple detection hypotheses are used to propagate object-level cues to segments and a unified classifier is trained based on the concatenated features. The experimental results show that our algorithm can avoid the drawbacks of separate detection or bottom-up segmentation, and can deal with very complicated cases.

摘要

乳腺超声图像病变分割的实现依赖于关于强度、纹理等的若干诊断规则。在本文中,我们提出了一种新颖的算法,通过在成对条件随机场(CRF)模型中结合图像过分割和病变检测,而不是逐词翻译,来对这些规则进行全面决策。使用多个检测假设将对象级线索传播到各个片段,并基于拼接特征训练一个统一的分类器。实验结果表明,我们的算法可以避免单独检测或自底向上分割的缺点,并且能够处理非常复杂的情况。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验