Hao Zhihui, Wang Qiang, Seong Yeong Kyeong, Lee Jong-Ha, Ren Haibing, Kim Ji-yeun
Samsung Advanced Institute of Technology, Samsung Electronics.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):504-11. doi: 10.1007/978-3-642-33415-3_62.
The implementation of lesion segmentation for breast ultrasound image relies on several diagnostic rules on intensity, texture, etc. In this paper, we propose a novel algorithm to achieve a comprehensive decision upon these rules by incorporating image over-segmentation and lesion detection in a pairwise CRF model, rather than a term-by-term translation. Multiple detection hypotheses are used to propagate object-level cues to segments and a unified classifier is trained based on the concatenated features. The experimental results show that our algorithm can avoid the drawbacks of separate detection or bottom-up segmentation, and can deal with very complicated cases.
乳腺超声图像病变分割的实现依赖于关于强度、纹理等的若干诊断规则。在本文中,我们提出了一种新颖的算法,通过在成对条件随机场(CRF)模型中结合图像过分割和病变检测,而不是逐词翻译,来对这些规则进行全面决策。使用多个检测假设将对象级线索传播到各个片段,并基于拼接特征训练一个统一的分类器。实验结果表明,我们的算法可以避免单独检测或自底向上分割的缺点,并且能够处理非常复杂的情况。