Department of Bioenergy, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.
Nat Protoc. 2013 Jan;8(1):190-202. doi: 10.1038/nprot.2012.149. Epub 2013 Jan 3.
Functions of complex natural microbial communities are realized by single cells that contribute differently to the overall performance of a community. Usually, molecular and, more recently, deep-sequencing techniques are used for detailed but resource-consuming phylogenetic or functional analyses of microbial communities. Here we present a method for analyzing dynamic community structures that rapidly detects functional (rather than phylogenetic) coherent subcommunities by monitoring changes in cell-specific and abiotic microenvironmental parameters. The protocol involves the use of flow cytometry to analyze elastic light scattering and fluorescent cell labeling, with subsequent determination of cell gate abundance and finally the creation of a cytometric community fingerprint. Abiotic parameter analysis data are correlated with the dynamic cytometric fingerprint to obtain a time-bound functional heat map. The map facilitates the identification of activity hot spots in communities, which can be further resolved by subsequent cell sorting of key subcommunities and concurrent phylogenetic analysis (terminal restriction fragment length polymorphism, tRFLP). The cytometric fingerprint information is based on gate template settings and the functional heat maps are created using an R script. Cytometric fingerprinting and evaluation can be accomplished in 1 d, and additional subcommunity composition information can be obtained in a further 6 d.
复杂自然微生物群落的功能是由对群落整体表现做出不同贡献的单个细胞来实现的。通常,分子技术,最近还有高通量测序技术,被用于对微生物群落进行详细但资源密集型的系统发育或功能分析。在这里,我们提出了一种分析动态群落结构的方法,该方法通过监测细胞特异性和非生物微环境参数的变化,快速检测功能(而非系统发育)上一致的亚群落。该方案涉及使用流式细胞术分析弹性光散射和荧光细胞标记,随后确定细胞门的丰度,最终创建细胞计量群落指纹。将非生物参数分析数据与动态细胞计量指纹相关联,以获得具有时间约束的功能热图。该地图有助于识别群落中的活性热点,通过随后对关键亚群落进行细胞分选和同时进行系统发育分析(末端限制性片段长度多态性,tRFLP),可以进一步解析这些热点。细胞计量指纹信息基于门模板设置,功能热图使用 R 脚本创建。细胞计量指纹分析和评估可以在 1 天内完成,并且可以在接下来的 6 天内获得更多的亚群落组成信息。