Enzymology and Molecular Biology Laboratory, Department of Chemistry and Life Science, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
J Biosci Bioeng. 2013 Jun;115(6):645-50. doi: 10.1016/j.jbiosc.2012.12.004. Epub 2013 Jan 5.
Among three erythritol reductase isogenes (er1, er2, and er3) in Trichosporonoides megachiliensis SN-124A, er1 and er2 each had one stress response element (STRE) approximately 2 kbp upstream of their respective initiator codon; in contrast, er3 had two STREs, 148 and 40 bp upstream from the initiator codon. Based on intracellular erythritol accumulation and gene expression profiles, er3 seemed to be highly responsive to stress than er1 or er2. Under hyper-osmotic conditions, intracellular glycerol production, increased significantly within 1.5 h together with glycerol-3-phosphate dehydrogenase gene (gpd1) expression; in contrast, neither er gene expression nor the corresponding production of intracellular erythritol increased significantly within the first 1.5 h of hyper-osmotic culture. However, within 24 h of hyper-osmotic culture, erythritol production and er3 gene expression increased significantly and in parallel. Thus, we concluded that, as an initial response to hyper-osmotic growth conditions, T. megachiliensis produces glycerol as an osmoregulatory compatible solute via GPD; however, within 24 h, it begins to produce erythritol, mainly via ER3, as the preferred compatible solute. Heterologous expression of ers in a Saccharomyces cerevisiae mutant indicated that any of three ers might not function in S. cerevisiae for erythritol biosynthesis in spite of ers and corresponding ERs expression. Hence, although er is annotated as a galactose-inducible crystalline-like yeast protein gene (gcy1) homolog, er may be functionally different from gcy1 in glycolytic metabolism. Otherwise, S. cerevisiae is not likely to produce erythrose, the substrate of erythrose reductase due to metabolic characteristics.
在 Trichosporonoides megachiliensis SN-124A 的三个赤藓糖醇还原酶基因(er1、er2 和 er3)中,er1 和 er2 在各自起始密码子上游约 2kbp 处各有一个应激反应元件(STRE);相比之下,er3 在起始密码子上游有两个 STRE,分别为 148bp 和 40bp。根据细胞内赤藓糖醇积累和基因表达谱,er3 似乎比 er1 或 er2 对压力更敏感。在高渗条件下,细胞内甘油产量在 1.5 小时内显著增加,同时甘油-3-磷酸脱氢酶基因(gpd1)表达增加;相比之下,在高渗培养的前 1.5 小时内,er 基因表达或相应的细胞内赤藓糖醇产生均未显著增加。然而,在高渗培养 24 小时后,赤藓糖醇的产生和 er3 基因表达显著增加并呈平行关系。因此,我们得出结论,作为对高渗生长条件的初始反应,T. megachiliensis 通过 GPD 产生甘油作为渗透调节相容溶质;然而,在 24 小时内,它开始主要通过 ER3 产生赤藓糖醇作为首选相容溶质。在酿酒酵母突变体中异源表达 ers 表明,尽管 ers 和相应的 ERs 表达,但这三种 ers 中的任何一种都可能无法在酿酒酵母中发挥作用用于赤藓糖醇生物合成。因此,尽管 er 被注释为半乳糖诱导的结晶样酵母蛋白基因(gcy1)同源物,但 er 在糖酵解代谢中可能与 gcy1 在功能上不同。否则,由于代谢特性,酿酒酵母不太可能产生赤藓糖,即赤藓糖还原酶的底物。