Suppr超能文献

利用视网膜尖峰时间计算复杂的视觉特征。

Computing complex visual features with retinal spike times.

机构信息

Max Planck Institute of Experimental Medicine, Göttingen, Germany.

出版信息

PLoS One. 2013;8(1):e53063. doi: 10.1371/journal.pone.0053063. Epub 2013 Jan 2.

Abstract

Neurons in sensory systems can represent information not only by their firing rate, but also by the precise timing of individual spikes. For example, certain retinal ganglion cells, first identified in the salamander, encode the spatial structure of a new image by their first-spike latencies. Here we explore how this temporal code can be used by downstream neural circuits for computing complex features of the image that are not available from the signals of individual ganglion cells. To this end, we feed the experimentally observed spike trains from a population of retinal ganglion cells to an integrate-and-fire model of post-synaptic integration. The synaptic weights of this integration are tuned according to the recently introduced tempotron learning rule. We find that this model neuron can perform complex visual detection tasks in a single synaptic stage that would require multiple stages for neurons operating instead on neural spike counts. Furthermore, the model computes rapidly, using only a single spike per afferent, and can signal its decision in turn by just a single spike. Extending these analyses to large ensembles of simulated retinal signals, we show that the model can detect the orientation of a visual pattern independent of its phase, an operation thought to be one of the primitives in early visual processing. We analyze how these computations work and compare the performance of this model to other schemes for reading out spike-timing information. These results demonstrate that the retina formats spatial information into temporal spike sequences in a way that favors computation in the time domain. Moreover, complex image analysis can be achieved already by a simple integrate-and-fire model neuron, emphasizing the power and plausibility of rapid neural computing with spike times.

摘要

感觉系统中的神经元不仅可以通过放电率来表示信息,还可以通过单个尖峰的精确时间来表示信息。例如,某些在蝾螈中首次鉴定的视网膜神经节细胞通过其首次发放的潜伏期来编码新图像的空间结构。在这里,我们探索了这种时间代码如何被下游神经回路用于计算图像的复杂特征,这些特征无法从单个神经节细胞的信号中获得。为此,我们将从一群视网膜神经节细胞中观察到的实际尖峰序列输入到突触后整合的积分-触发模型中。这个整合的突触权重是根据最近提出的 tempotron 学习规则进行调整的。我们发现,这个模型神经元可以在单个突触阶段执行复杂的视觉检测任务,而对于替代使用神经尖峰计数的神经元来说,这需要多个阶段。此外,该模型使用单个传入的尖峰快速计算,并且可以通过仅单个尖峰来依次发出其决策信号。将这些分析扩展到模拟视网膜信号的大型集合中,我们表明该模型可以独立于其相位检测视觉模式的方向,这一操作被认为是早期视觉处理中的基本操作之一。我们分析了这些计算是如何工作的,并将该模型的性能与其他读取尖峰时间信息的方案进行了比较。这些结果表明,视网膜以有利于在时域中进行计算的方式将空间信息格式化为时间尖峰序列。此外,复杂的图像分析已经可以通过简单的积分-触发模型神经元来实现,这强调了利用尖峰时间进行快速神经计算的强大功能和合理性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f0f/3534662/d70bd444f80b/pone.0053063.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验