Suppr超能文献

学习使用神经元群体中的内部相关性来制作外部感觉刺激预测。

Learning to make external sensory stimulus predictions using internal correlations in populations of neurons.

机构信息

Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637.

Department of Neurobiology, University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2018 Jan 30;115(5):1105-1110. doi: 10.1073/pnas.1710779115. Epub 2018 Jan 18.

Abstract

To compensate for sensory processing delays, the visual system must make predictions to ensure timely and appropriate behaviors. Recent work has found predictive information about the stimulus in neural populations early in vision processing, starting in the retina. However, to utilize this information, cells downstream must be able to read out the predictive information from the spiking activity of retinal ganglion cells. Here we investigate whether a downstream cell could learn efficient encoding of predictive information in its inputs from the correlations in the inputs themselves, in the absence of other instructive signals. We simulate learning driven by spiking activity recorded in salamander retina. We model a downstream cell as a binary neuron receiving a small group of weighted inputs and quantify the predictive information between activity in the binary neuron and future input. Input weights change according to spike timing-dependent learning rules during a training period. We characterize the readouts learned under spike timing-dependent synaptic update rules, finding that although the fixed points of learning dynamics are not associated with absolute optimal readouts they convey nearly all of the information conveyed by the optimal readout. Moreover, we find that learned perceptrons transmit position and velocity information of a moving-bar stimulus nearly as efficiently as optimal perceptrons. We conclude that predictive information is, in principle, readable from the perspective of downstream neurons in the absence of other inputs. This suggests an important role for feedforward prediction in sensory encoding.

摘要

为了补偿感觉处理延迟,视觉系统必须做出预测,以确保及时和适当的行为。最近的工作发现,在视觉处理早期,从视网膜开始,神经群体中就存在关于刺激的预测信息。然而,要利用这些信息,下游的细胞必须能够从视网膜神经节细胞的尖峰活动中读取预测信息。在这里,我们研究了在没有其他指导信号的情况下,下游细胞是否可以通过输入本身的相关性,从输入中学习到对预测信息的有效编码。我们模拟了由蝾螈视网膜记录的尖峰活动驱动的学习。我们将一个下游细胞建模为一个接收一小组加权输入的二进制神经元,并量化二进制神经元活动与未来输入之间的预测信息。在训练期间,根据尖峰时间依赖的学习规则改变输入权重。我们对尖峰时间依赖的突触更新规则下的学习输出进行了特征描述,发现尽管学习动力学的固定点与绝对最优输出无关,但它们传达了最优输出传达的几乎所有信息。此外,我们发现学习到的感知器几乎可以像最优感知器一样有效地传输移动棒刺激的位置和速度信息。我们的结论是,在没有其他输入的情况下,从下游神经元的角度来看,预测信息是可读的。这表明前馈预测在感觉编码中起着重要作用。

相似文献

2
Computing complex visual features with retinal spike times.利用视网膜尖峰时间计算复杂的视觉特征。
PLoS One. 2013;8(1):e53063. doi: 10.1371/journal.pone.0053063. Epub 2013 Jan 2.
5
A Spiking Neural Network System for Robust Sequence Recognition.一种用于稳健序列识别的脉冲神经网络系统。
IEEE Trans Neural Netw Learn Syst. 2016 Mar;27(3):621-35. doi: 10.1109/TNNLS.2015.2416771. Epub 2015 Apr 14.
7
Emergence of optimal decoding of population codes through STDP.通过 STDP 实现群体编码的最优解码的出现。
Neural Comput. 2013 Jun;25(6):1371-407. doi: 10.1162/NECO_a_00446. Epub 2013 Mar 21.
9
Bayesian spiking neurons II: learning.贝叶斯脉冲神经元II:学习
Neural Comput. 2008 Jan;20(1):118-45. doi: 10.1162/neco.2008.20.1.118.

引用本文的文献

2
Contiguity in perception: origins in cellular associative computations.感知的连续性:源于细胞的联想计算。
Trends Neurosci. 2024 Mar;47(3):170-180. doi: 10.1016/j.tins.2024.01.001. Epub 2024 Feb 2.
7
Predictive encoding of motion begins in the primate retina.运动的预测编码始于灵长类动物的视网膜。
Nat Neurosci. 2021 Sep;24(9):1280-1291. doi: 10.1038/s41593-021-00899-1. Epub 2021 Aug 2.
9
Optimal prediction with resource constraints using the information bottleneck.在资源约束下使用信息瓶颈进行最优预测。
PLoS Comput Biol. 2021 Mar 8;17(3):e1008743. doi: 10.1371/journal.pcbi.1008743. eCollection 2021 Mar.

本文引用的文献

1
Toward an Integration of Deep Learning and Neuroscience.迈向深度学习与神经科学的整合。
Front Comput Neurosci. 2016 Sep 14;10:94. doi: 10.3389/fncom.2016.00094. eCollection 2016.
3
The Role of Motion Extrapolation in Amphibian Prey Capture.运动外推在两栖动物捕食中的作用。
J Neurosci. 2015 Nov 18;35(46):15430-41. doi: 10.1523/JNEUROSCI.3189-15.2015.
5
High Accuracy Decoding of Dynamical Motion from a Large Retinal Population.从大量视网膜神经元群体中高精度解码动态运动
PLoS Comput Biol. 2015 Jul 1;11(7):e1004304. doi: 10.1371/journal.pcbi.1004304. eCollection 2015 Jul.
6
Predictive information in a sensory population.感觉群体中的预测信息。
Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6908-13. doi: 10.1073/pnas.1506855112. Epub 2015 May 18.
10
Lag normalization in an electrically coupled neural network.电耦合神经网络中的滞后归一化。
Nat Neurosci. 2013 Feb;16(2):154-6. doi: 10.1038/nn.3308. Epub 2013 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验