Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK.
Phys Chem Chem Phys. 2013 Feb 21;15(7):2572-9. doi: 10.1039/c2cp44397j. Epub 2013 Jan 11.
Lithium salts have been shown to dramatically increase the conductivity in a broad range of polymeric and small molecule organic semiconductors (OSs). Here we demonstrate and identify the mechanism by which Li(+) p-dopes OSs in the presence of oxygen. After we established the lithium doping mechanism, we re-evaluate the role of lithium bis(trifluoromethylsulfonyl)-imide (Li-TFSI) in 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)9,9'-Spirobifluorene (Spiro-OMeTAD) based solid-state dye-sensitized solar cells (ss-DSSCs). The doping mechanism consumes Li(+) during the device operation, which poses a problem, since the lithium salt is required at the dye-sensitized heterojunction to enhance charge generation. This compromise highlights that new additives are required to maximize the performance and the long-term stability of ss-DSSCs.
锂盐已被证明能显著提高广泛的聚合物和小分子有机半导体(OSs)的电导率。在这里,我们证明并确定了在氧气存在下 Li(+) 对 OSs 进行 p 掺杂的机制。在我们确定了锂掺杂机制后,我们重新评估了双(三氟甲基磺酰基)亚胺锂(Li-TFSI)在 2,2',7,7'-四(N,N-二-对甲氧基苯基-胺)9,9'-螺二芴(Spiro-OMeTAD)基于固态染料敏化太阳能电池(ss-DSSCs)中的作用。掺杂机制在器件运行过程中消耗 Li(+),这是一个问题,因为在染料敏化异质结中需要锂盐来增强电荷产生。这种折衷突显了需要新的添加剂来最大限度地提高 ss-DSSCs 的性能和长期稳定性。