Instituto de Biomedicina de Valencia. Consejo Superior de Investigaciones Científicas (IBV-CSIC). Calle Jaime Roig 11 , 46010. Valencia. Spain.
Sci Rep. 2013;3:1060. doi: 10.1038/srep01060. Epub 2013 Jan 14.
How to determine the community structure of complex networks is an open question. It is critical to establish the best strategies for community detection in networks of unknown structure. Here, using standard synthetic benchmarks, we show that none of the algorithms hitherto developed for community structure characterization perform optimally. Significantly, evaluating the results according to their modularity, the most popular measure of the quality of a partition, systematically provides mistaken solutions. However, a novel quality function, called Surprise, can be used to elucidate which is the optimal division into communities. Consequently, we show that the best strategy to find the community structure of all the networks examined involves choosing among the solutions provided by multiple algorithms the one with the highest Surprise value. We conclude that Surprise maximization precisely reveals the community structure of complex networks.
如何确定复杂网络的社区结构是一个悬而未决的问题。在结构未知的网络中建立最佳的社区检测策略至关重要。在这里,我们使用标准的综合基准,表明迄今为止为社区结构特征开发的算法都没有达到最佳性能。重要的是,根据其模块化程度(衡量划分质量的最常用指标)评估结果会系统地提供错误的解决方案。然而,我们可以使用一种称为“惊喜”的新质量函数来阐明最优的社区划分。因此,我们表明,找到所有被研究网络的社区结构的最佳策略是,在多个算法提供的解决方案中选择惊喜值最高的那个。我们的结论是,惊喜最大化准确地揭示了复杂网络的社区结构。