Artzrouni M
Department of Mathematical Sciences, Loyola University, New Orleans, LA 70118.
J Math Biol. 1990;28(3):271-91. doi: 10.1007/BF00178777.
During the initially exponential spread of the human immunodeficiency virus (HIV--the causative agent of AIDS) the growth rate of the number of AIDS cases decreased from plus infinity to the growth rate of HIV infections. A sensitivity analysis shows that for all reasonable values of the parameters of the HIV epidemic (incubation period, initial doubling time, etc.) the effect of this positive transient becomes negligible when the annual number of AIDS cases reaches a few dozen. Necessary and sufficient conditions are given for the growth rate of the number of AIDS cases to be monotonically decreasing during the positive transient. A mildly pathological density function for the incubation period of AIDS provides an example of a growth rate of AIDS that does not decrease monotonically, even though HIV is spreading exponentially. A negative transient occurs when the growth rate of HIV begins to decrease. In this context a somewhat surprising result emerges under the assumption that the growth rate of HIV is non-increasing: the growth rate of AIDS is at all times larger than the growth rate of HIV. A logistic HIV epidemic illustrates this result, and implications for the growth of the HIV epidemic in the United States and Europe are discussed. In particular, it is shown that the positive transient must have passed by 1982 in the United States and by 1986 or 1987 for the five European countries with the largest caseloads.
在人类免疫缺陷病毒(HIV——艾滋病的病原体)最初呈指数级传播期间,艾滋病病例数的增长率从正无穷降至HIV感染率。敏感性分析表明,对于HIV流行的所有合理参数值(潜伏期、初始倍增时间等),当年艾滋病病例数达到几十例时,这种正瞬态的影响就变得微不足道了。给出了在正瞬态期间艾滋病病例数增长率单调递减的充要条件。一个关于艾滋病潜伏期的轻度病态密度函数给出了一个例子,即尽管HIV呈指数级传播,但艾滋病的增长率并非单调递减。当HIV的增长率开始下降时,就会出现负瞬态。在这种情况下,在HIV增长率不增加的假设下出现了一个有点令人惊讶的结果:艾滋病的增长率始终大于HIV的增长率。一个逻辑斯蒂HIV流行模型说明了这一结果,并讨论了其对美国和欧洲HIV流行增长的影响。特别是,结果表明,在美国,正瞬态肯定在1982年之前就已经过去,而对于病例数最多的五个欧洲国家,正瞬态在1986年或1987年之前就已经过去。