Suppr超能文献

用于最大程度吸引和推动纳米粒子的最优哈尔巴赫永磁体设计。

Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.

作者信息

Sarwar A, Nemirovski A, Shapiro B

机构信息

Fischell Department of Bioengineering, College Park ; University of Maryland, College Park.

出版信息

J Magn Magn Mater. 2012 Mar 1;324(5):742-754. doi: 10.1016/j.jmmm.2011.09.008. Epub 2011 Sep 19.

Abstract

Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm(3)), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.

摘要

本文提出了优化方法,用于设计哈尔巴赫阵列,以最大化在深部组织位置施加于磁性纳米颗粒上的力。在磁性药物靶向治疗中,利用磁体将治疗性纳米颗粒聚焦于疾病部位,但磁场和力随与磁体距离的急剧衰减限制了靶向深度。通过优化设计的哈尔巴赫阵列在深部产生更强的力,将能够治疗更广泛的患者群体,例如患有深部肿瘤的患者。所提出的优化方法基于半定二次规划,可在二维和三维中产生可证明的全局最优哈尔巴赫设计,以实现最大的拉或推磁力(更强的拉力可在更深的血管中对抗血流收集纳米颗粒;推力可用于将颗粒注入精确位置,例如内耳)。这些哈尔巴赫设计在麦克斯韦方程组的模拟中进行了测试,显著优于相同尺寸和强度的基准磁体。例如,一个三维36单元、体积为2000立方厘米的最优哈尔巴赫设计,与相同尺寸和强度的均匀磁化磁体相比,在10厘米深度处产生的力大5倍。所设计的阵列应该在构建上是可行的,因为它们具有与先前展示的阵列相似的强度(≤1特斯拉)、尺寸(≤2000立方厘米)和单元数量(≤36),并且对于合理的制造误差(单元磁化方向误差≤5°)仍保持良好性能,从而产生实用的设计以提高磁性药物靶向治疗深度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验