Suppr超能文献

乳头瘤病毒潜伏的生物学特性。

The biology of papillomavirus latency.

作者信息

Maglennon Gareth Adam, Doorbar John

机构信息

Pathology & Infectious Diseases, The Royal Veterinary College, North Mymms, AL9 7TA, UK.

出版信息

Open Virol J. 2012;6:190-7. doi: 10.2174/1874357901206010190. Epub 2012 Dec 28.

Abstract

The presence of viral DNA in the absence of disease has suggested that papillomaviruses, like many other viruses, can exist as latent infections in the skin or other epithelial sites. In animal models, where detailed investigation has been carried out, papillomavirus DNA can be found at sites of previous infection following immune regression, with the site of latent infection being the epithelial basal layer. Such studies suggest that immune surveillance can restrict viral gene expression in the basal and parabasal layers without efficiently suppressing viral genome replication, most probably through the action of memory T-cells in the skin or dermis. Although gradual papillomavirus genome loss appears to occur over time at latent sites, immunosuppression can arrest this, and can lead to an elevation in viral genome copy number in experimental systems. In addition to immune-mediated latency, it appears that a similar situation can be achieved following infection at low virus titres and/or infection at epithelial sites where the virus life cycle is not properly supported. Such silent of asymptomatic infections do not necessarily involve the host immune system and may be controlled by different mechanisms. It appears that virus reactivation can be triggered by mechanical irritation, wounding or by UV irradiation which changes the local environment. Although the duration of papillomavirus latency in humans is not yet known, it is likely that some of the basic principles will resemble those elucidated in these model systems, and that persistence in the absence of disease may be the default outcome for at least some period of time following regression.

摘要

在没有疾病的情况下检测到病毒DNA,这表明乳头瘤病毒与许多其他病毒一样,可作为潜伏感染存在于皮肤或其他上皮部位。在已进行详细研究的动物模型中,免疫消退后可在先前感染部位发现乳头瘤病毒DNA,潜伏感染部位为上皮基底层。此类研究表明,免疫监视可限制基底层和副基底层中的病毒基因表达,但无法有效抑制病毒基因组复制,这很可能是通过皮肤或真皮中记忆T细胞的作用实现的。虽然随着时间推移,潜伏部位的乳头瘤病毒基因组似乎会逐渐丢失,但免疫抑制可阻止这种情况发生,并可导致实验系统中病毒基因组拷贝数增加。除了免疫介导的潜伏外,在低病毒滴度感染和/或在病毒生命周期未得到适当支持的上皮部位感染后,似乎也会出现类似情况。这种无症状感染不一定涉及宿主免疫系统,可能由不同机制控制。似乎病毒再激活可由机械刺激、创伤或紫外线照射引发,这些因素会改变局部环境。虽然人类乳头瘤病毒潜伏的持续时间尚不清楚,但很可能一些基本原理与这些模型系统中所阐明的原理相似,并且在消退后的至少一段时间内,在没有疾病的情况下持续存在可能是默认结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7953/3547330/1ed3aab2c86f/TOVJ-6-190_F1.jpg

相似文献

1
The biology of papillomavirus latency.
Open Virol J. 2012;6:190-7. doi: 10.2174/1874357901206010190. Epub 2012 Dec 28.
2
Latent papillomavirus infections and their regulation.
Curr Opin Virol. 2013 Aug;3(4):416-21. doi: 10.1016/j.coviro.2013.06.003. Epub 2013 Jun 29.
3
Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression.
Virology. 2011 Jun 5;414(2):153-63. doi: 10.1016/j.virol.2011.03.019. Epub 2011 Apr 13.
5
The human Papillomavirus twilight zone - Latency, immune control and subclinical infection.
Tumour Virus Res. 2023 Dec;16:200268. doi: 10.1016/j.tvr.2023.200268. Epub 2023 Jun 23.
6
Evidence and impact of human papillomavirus latency.
Open Virol J. 2012;6:198-203. doi: 10.2174/1874357901206010198. Epub 2012 Dec 28.
7
The human papillomavirus type 16 E7 oncogene is required for the productive stage of the viral life cycle.
J Virol. 2000 Jul;74(14):6622-31. doi: 10.1128/jvi.74.14.6622-6631.2000.
8
Immunosuppression facilitates the reactivation of latent papillomavirus infections.
J Virol. 2014 Jan;88(1):710-6. doi: 10.1128/JVI.02589-13. Epub 2013 Oct 30.
9
Inhibition of Epstein-Barr Virus Replication in Human Papillomavirus-Immortalized Keratinocytes.
J Virol. 2019 Jan 4;93(2). doi: 10.1128/JVI.01216-18. Print 2019 Jan 15.
10
The papillomavirus life cycle.
J Clin Virol. 2005 Mar;32 Suppl 1:S7-15. doi: 10.1016/j.jcv.2004.12.006.

引用本文的文献

1
Unraveling HPV-associated cancer complexity: From molecular insights to innovative therapies.
Heliyon. 2025 Feb 3;11(3):e42437. doi: 10.1016/j.heliyon.2025.e42437. eCollection 2025 Feb 15.
2
Sexually transmitted human papillomavirus and related sequelae.
Clin Microbiol Rev. 2025 Mar 13;38(1):e0008523. doi: 10.1128/cmr.00085-23. Epub 2025 Feb 14.
3
Synthesis and Antitumor Activity of Brominated-Ormeloxifene (Br-ORM) against Cervical Cancer.
ACS Omega. 2023 Oct 12;8(42):38839-38848. doi: 10.1021/acsomega.3c02277. eCollection 2023 Oct 24.
4
Human papillomaviruses: Knowns, mysteries, and unchartered territories.
J Med Virol. 2023 Oct;95(10):e29191. doi: 10.1002/jmv.29191.
5
The human Papillomavirus twilight zone - Latency, immune control and subclinical infection.
Tumour Virus Res. 2023 Dec;16:200268. doi: 10.1016/j.tvr.2023.200268. Epub 2023 Jun 23.
7
Development of immunodiagnostic tools for in situ investigation of Ovis aries papillomavirus 3 (OaPV3).
Vet Res Commun. 2023 Jun;47(2):641-649. doi: 10.1007/s11259-022-10018-5. Epub 2022 Nov 4.
9
Viruses Infecting the European Catfish ().
Viruses. 2021 Sep 18;13(9):1865. doi: 10.3390/v13091865.
10
Nested PCR followed by NGS: Validation and application for HPV genotyping of Tunisian cervical samples.
PLoS One. 2021 Aug 11;16(8):e0255914. doi: 10.1371/journal.pone.0255914. eCollection 2021.

本文引用的文献

1
Molecular diagnosis of a laboratory mouse papillomavirus (MusPV).
Exp Mol Pathol. 2012 Dec;93(3):416-21. doi: 10.1016/j.yexmp.2012.07.001. Epub 2012 Jul 11.
2
The E1 protein of human papillomavirus type 16 is dispensable for maintenance replication of the viral genome.
J Virol. 2012 Mar;86(6):3276-83. doi: 10.1128/JVI.06450-11. Epub 2012 Jan 11.
4
Persistence of viral DNA in the epithelial basal layer suggests a model for papillomavirus latency following immune regression.
Virology. 2011 Jun 5;414(2):153-63. doi: 10.1016/j.virol.2011.03.019. Epub 2011 Apr 13.
5
Effect of Pap smear collection and carrageenan on cervicovaginal human papillomavirus-16 infection in a rhesus macaque model.
J Natl Cancer Inst. 2011 May 4;103(9):737-43. doi: 10.1093/jnci/djr061. Epub 2011 Apr 11.
6
Bovine papillomavirus DNA can be detected in keratinocytes of equine sarcoid tumors.
Vet Microbiol. 2010 Dec 15;146(3-4):269-75. doi: 10.1016/j.vetmic.2010.05.032. Epub 2010 Jun 1.
7
Genomic analysis of the first laboratory-mouse papillomavirus.
J Gen Virol. 2011 Mar;92(Pt 3):692-8. doi: 10.1099/vir.0.026138-0. Epub 2010 Nov 17.
8
Novel laboratory mouse papillomavirus (MusPV) infection.
Vet Pathol. 2011 Mar;48(2):500-5. doi: 10.1177/0300985810377186. Epub 2010 Aug 4.
9
Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle.
Interdiscip Perspect Infect Dis. 2010;2010:262415. doi: 10.1155/2010/262415. Epub 2010 Feb 15.
10
ORAL PAPILLOMATOSIS OF RABBITS: A VIRUS DISEASE.
J Exp Med. 1943 Mar 1;77(3):233-50. doi: 10.1084/jem.77.3.233.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验