Liverpool Heart and Chest Hospital, Liverpool, UK.
Eur J Cardiothorac Surg. 2013 Aug;44(2):238-42; discussion 242-3. doi: 10.1093/ejcts/ezs658. Epub 2013 Jan 22.
Using a large, prospectively collected and independently validated thoracic database, we created a risk-prediction tool for in-hospital mortality with the aim of improving on the accuracy of Thoracoscore.
A prospectively collected and independently validated database containing lung resections was utilized, N = 2574. Logistic regression analysis with bootstrapping, and by the use of a random training and test set was utilized. Comparisons against the Thoracoscore, ESOS.01 and the Society of Thoracic Surgeons (STS) models were performed.
A logistic model identified age [odds ratio (OR) 1.1, 95% confidence interval (CI) 1.0-1.2, P = 0.0002], sex (OR 0.34, 95% CI 0.14-0.83, P = 0.02), predicted postoperative FEV1 (OR 0.96, 95% CI 0.94-0.99, P = 0.002), emphysema (OR 3.2, 95% CI 1.0-9.9, P = 0.04), excess alcohol consumption (OR 1.0, 95% CI 1.0-1.0, P = 0.04), pre-existing renal disease (OR 4.3, 95% CI 1.1-17.1, P = 0.04), predicted in-hospital mortality with an receiver operating curve (ROC) of 0.81 and a Hosmer-Lemeshow test of 0.9. Bootstrap analysis confirmed the above risk factors (ROC 0.82 and Hosmer-Lemeshow 0.2). Comparisons between Thoracoscore, ESOS.01 and the STS risk models demonstrated that none was very accurate, as all had low ROC values of 0.69, 0.70 and 0.61, respectively. The STS risk model does not apply to our population (ROC 0.61, Hosmer-Lemeshow, P = 0.004), and the ESOS.01 has poor predictive power (Hosmer-Lemeshow, P < 0.0001).
Logistic regression based on age, sex, predicted postoperative FEV1, alcohol consumption and pre-existing renal disease predicts in-hospital mortality with improved accuracy compared with the use of Thoracoscore, ESOS.01 and the STS risk model.
利用大型前瞻性收集和独立验证的胸科数据库,我们创建了一种用于院内死亡率的风险预测工具,旨在提高 Thoracoscore 的准确性。
使用前瞻性收集和独立验证的肺切除术数据库,N = 2574。使用 bootstrap 和随机训练测试集进行逻辑回归分析。与 Thoracoscore、ESOS.01 和胸外科医生协会(STS)模型进行比较。
逻辑模型确定了年龄[优势比(OR)1.1,95%置信区间(CI)1.0-1.2,P = 0.0002]、性别(OR 0.34,95%CI 0.14-0.83,P = 0.02)、预测术后 FEV1(OR 0.96,95%CI 0.94-0.99,P = 0.002)、肺气肿(OR 3.2,95%CI 1.0-9.9,P = 0.04)、过量饮酒(OR 1.0,95%CI 1.0-1.0,P = 0.04)、预先存在的肾脏疾病(OR 4.3,95%CI 1.1-17.1,P = 0.04),预测住院死亡率的受试者工作特征曲线(ROC)为 0.81,Hosmer-Lemeshow 检验为 0.9。Bootstrap 分析证实了上述危险因素(ROC 0.82 和 Hosmer-Lemeshow 0.2)。Thoracoscore、ESOS.01 和 STS 风险模型之间的比较表明,没有一个非常准确,因为所有的 ROC 值都很低,分别为 0.69、0.70 和 0.61。STS 风险模型不适用于我们的人群(ROC 0.61,Hosmer-Lemeshow,P = 0.004),ESOS.01 预测能力差(Hosmer-Lemeshow,P < 0.0001)。
基于年龄、性别、预测术后 FEV1、饮酒和预先存在的肾脏疾病的逻辑回归预测院内死亡率的准确性优于使用 Thoracoscore、ESOS.01 和 STS 风险模型。