Suppr超能文献

鉴定导致基因组不稳定的早期复制脆性位点。

Identification of early replicating fragile sites that contribute to genome instability.

机构信息

Laboratory of Genome Integrity, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA.

出版信息

Cell. 2013 Jan 31;152(3):620-32. doi: 10.1016/j.cell.2013.01.006. Epub 2013 Jan 24.

Abstract

DNA double-strand breaks (DSBs) in B lymphocytes arise stochastically during replication or as a result of targeted DNA damage by activation-induced cytidine deaminase (AID). Here we identify recurrent, early replicating, and AID-independent DNA lesions, termed early replication fragile sites (ERFSs), by genome-wide localization of DNA repair proteins in B cells subjected to replication stress. ERFSs colocalize with highly expressed gene clusters and are enriched for repetitive elements and CpG dinucleotides. Although distinct from late-replicating common fragile sites (CFS), the stability of ERFSs and CFSs is similarly dependent on the replication-stress response kinase ATR. ERFSs break spontaneously during replication, but their fragility is increased by hydroxyurea, ATR inhibition, or deregulated c-Myc expression. Moreover, greater than 50% of recurrent amplifications/deletions in human diffuse large B cell lymphoma map to ERFSs. In summary, we have identified a source of spontaneous DNA lesions that drives instability at preferred genomic sites.

摘要

B 淋巴细胞中的 DNA 双链断裂 (DSBs) 是在复制过程中随机产生的,或者是由于激活诱导的胞嘧啶脱氨酶 (AID) 靶向 DNA 损伤所致。在这里,我们通过在复制应激下的 B 细胞中对 DNA 修复蛋白进行全基因组定位,鉴定了反复出现的、早期复制的、与 AID 无关的 DNA 损伤,称为早期复制脆弱位点 (ERFS)。ERFS 与高表达基因簇共定位,富含重复元件和 CpG 二核苷酸。尽管与晚期复制的常见脆弱位点 (CFS) 不同,但 ERFS 和 CFS 的稳定性同样依赖于复制应激反应激酶 ATR。ERFS 在复制过程中自发断裂,但羟脲、ATR 抑制或 c-Myc 表达失调会增加其脆性。此外,人类弥漫性大 B 细胞淋巴瘤中超过 50%的反复扩增/缺失都映射到 ERFS 上。总之,我们已经确定了一种自发产生 DNA 损伤的来源,这种损伤会导致特定基因组位点的不稳定性。

相似文献

1
Identification of early replicating fragile sites that contribute to genome instability.
Cell. 2013 Jan 31;152(3):620-32. doi: 10.1016/j.cell.2013.01.006. Epub 2013 Jan 24.
2
Impaired Replication Timing Promotes Tissue-Specific Expression of Common Fragile Sites.
Genes (Basel). 2020 Mar 19;11(3):326. doi: 10.3390/genes11030326.
4
FANCD2 binding identifies conserved fragile sites at large transcribed genes in avian cells.
Nucleic Acids Res. 2018 Feb 16;46(3):1280-1294. doi: 10.1093/nar/gkx1260.
6
Dual Roles of Poly(dA:dT) Tracts in Replication Initiation and Fork Collapse.
Cell. 2018 Aug 23;174(5):1127-1142.e19. doi: 10.1016/j.cell.2018.07.011. Epub 2018 Aug 2.
7
Initiation of genome instability and preneoplastic processes through loss of Fhit expression.
PLoS Genet. 2012;8(11):e1003077. doi: 10.1371/journal.pgen.1003077. Epub 2012 Nov 29.
8
Genome-wide high-resolution mapping of mitotic DNA synthesis sites and common fragile sites by direct sequencing.
Cell Res. 2020 Nov;30(11):1009-1023. doi: 10.1038/s41422-020-0357-y. Epub 2020 Jun 19.
9
DNA replication stress drives fragile site instability.
Mutat Res. 2018 Mar;808:56-61. doi: 10.1016/j.mrfmmm.2017.10.002. Epub 2017 Oct 18.
10
Insights into common fragile site instability: DNA replication challenges at DNA repeat sequences.
Emerg Top Life Sci. 2023 Dec 14;7(3):277-287. doi: 10.1042/ETLS20230023.

引用本文的文献

3
G-quadruplex stabilization induces DNA breaks in pericentromeric repetitive DNA sequences in B lymphocytes.
Proc Natl Acad Sci U S A. 2025 Aug 26;122(34):e2506939122. doi: 10.1073/pnas.2506939122. Epub 2025 Aug 20.
4
DNA replication timing reveals genome-wide features of transcription and fragility.
Nat Commun. 2025 May 19;16(1):4658. doi: 10.1038/s41467-025-59991-w.
5
Small Genomes, Big Disruptions: Parvoviruses and the DNA Damage Response.
Viruses. 2025 Mar 29;17(4):494. doi: 10.3390/v17040494.
8
Mechanism for local attenuation of DNA replication at double-strand breaks.
Nature. 2025 Mar;639(8056):1084-1092. doi: 10.1038/s41586-024-08557-9. Epub 2025 Feb 19.
10
DNA replication initiation drives focal mutagenesis and rearrangements in human cancers.
Nat Commun. 2024 Dec 30;15(1):10850. doi: 10.1038/s41467-024-55148-3.

本文引用的文献

1
RPA accumulation during class switch recombination represents 5'-3' DNA-end resection during the S-G2/M phase of the cell cycle.
Cell Rep. 2013 Jan 31;3(1):138-47. doi: 10.1016/j.celrep.2012.12.006. Epub 2013 Jan 3.
2
Increased replication initiation and conflicts with transcription underlie Cyclin E-induced replication stress.
Oncogene. 2013 Aug 8;32(32):3744-53. doi: 10.1038/onc.2012.387. Epub 2012 Sep 3.
3
An encyclopedia of mouse DNA elements (Mouse ENCODE).
Genome Biol. 2012 Aug 13;13(8):418. doi: 10.1186/gb-2012-13-8-418.
4
5
Mechanisms for recurrent and complex human genomic rearrangements.
Curr Opin Genet Dev. 2012 Jun;22(3):211-20. doi: 10.1016/j.gde.2012.02.012. Epub 2012 Mar 20.
6
Spatial organization of the mouse genome and its role in recurrent chromosomal translocations.
Cell. 2012 Mar 2;148(5):908-21. doi: 10.1016/j.cell.2012.02.002. Epub 2012 Feb 16.
7
DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes.
Nature. 2012 Feb 7;484(7392):69-74. doi: 10.1038/nature10909.
8
Nonimmunoglobulin target loci of activation-induced cytidine deaminase (AID) share unique features with immunoglobulin genes.
Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2479-84. doi: 10.1073/pnas.1120791109. Epub 2012 Jan 30.
9
The genetic basis of early T-cell precursor acute lymphoblastic leukaemia.
Nature. 2012 Jan 11;481(7380):157-63. doi: 10.1038/nature10725.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验