Suppr超能文献

基于噬菌体的生物传感器在食源性病原体检测中的最新进展。

Recent advances in bacteriophage based biosensors for food-borne pathogen detection.

机构信息

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4, Canada.

出版信息

Sensors (Basel). 2013 Jan 30;13(2):1763-86. doi: 10.3390/s130201763.

Abstract

Foodborne diseases are a major health concern that can have severe impact on society and can add tremendous financial burden to our health care systems. Rapid early detection of food contamination is therefore relevant for the containment of food-borne pathogens. Conventional pathogen detection methods, such as microbiological and biochemical identification are time-consuming and laborious, while immunological or nucleic acid-based techniques require extensive sample preparation and are not amenable to miniaturization for on-site detection. Biosensors have shown tremendous promise to overcome these limitations and are being aggressively studied to provide rapid, reliable and sensitive detection platforms for such applications. Novel biological recognition elements are studied to improve the selectivity and facilitate integration on the transduction platform for sensitive detection. Bacteriophages are one such unique biological entity that show excellent host selectivity and have been actively used as recognition probes for pathogen detection. This review summarizes the extensive literature search on the application of bacteriophages (and recently their receptor binding proteins) as probes for sensitive and selective detection of foodborne pathogens, and critically outlines their advantages and disadvantages over other recognition elements.

摘要

食源性疾病是一个主要的健康问题,会对社会造成严重影响,并给我们的医疗系统带来巨大的经济负担。因此,快速早期检测食物污染对于遏制食源性病原体至关重要。传统的病原体检测方法,如微生物学和生化鉴定,既费时又费力,而免疫学或基于核酸的技术则需要广泛的样品制备,并且不适用于现场检测的小型化。生物传感器在克服这些限制方面显示出巨大的潜力,并正在被积极研究,以提供用于此类应用的快速、可靠和敏感的检测平台。新型生物识别元件被研究以提高选择性并促进在转导平台上的集成,以实现敏感检测。噬菌体就是这样一种独特的生物实体,它表现出极好的宿主选择性,并被积极用作病原体检测的识别探针。本文综述了广泛的文献,总结了噬菌体(最近还有它们的受体结合蛋白)作为食源性病原体敏感和选择性检测探针的应用,并批判性地概述了它们相对于其他识别元件的优缺点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d8/3649382/9296b83d866c/sensors-13-01763f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验