Department of Chemistry, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of SãoPaulo, Bandeirantes Avenue, 3900, Ribeirão Preto, SP 14040-901, Brazil.
Int J Mol Sci. 2013 Jan 30;14(2):2875-902. doi: 10.3390/ijms14022875.
Efficient, low-cost enzymatic hydrolysis of lignocellulosic residues is essential for cost-effective production of bioethanol. The production of β-glucosidase, β-xylosidase and xylanase by Colletotrichum graminicola was optimized using Response Surface Methodology (RSM). Maximal production occurred in wheat bran. Sugarcane trash, peanut hulls and corncob enhanced β-glucosidase, β-xylosidase and xylanase production, respectively. Maximal levels after optimization reached 159.3 ± 12.7 U g-1, 128.1 ± 6.4 U g-1 and 378.1 ± 23.3 U g-1, respectively, but the enzymes were produced simultaneously at good levels under culture conditions optimized for each one of them. Optima of pH and temperature were 5.0 and 65 °C for the three enzymes, which maintained full activity for 72 h at 50 °C and for 120 min at 60 °C (β-glucosidase) or 65 °C (β-xylosidase and xylanase). Mixed with Trichoderma reesei cellulases, C. graminicola crude extract hydrolyzed raw sugarcane trash with glucose yield of 33.1% after 48 h, demonstrating good potential to compose efficient cocktails for lignocellulosic materials hydrolysis.
高效、低成本的木质纤维素残余物酶解对于经济高效生产生物乙醇至关重要。利用响应面法(RSM)对胶孢炭疽菌产生的β-葡萄糖苷酶、β-木糖苷酶和木聚糖酶进行了优化。在麦麸中产量最高。甘蔗渣、花生壳和玉米芯分别提高了β-葡萄糖苷酶、β-木糖苷酶和木聚糖酶的产量。优化后的最高水平分别达到 159.3±12.7 U g-1、128.1±6.4 U g-1 和 378.1±23.3 U g-1,但在优化后的每种酶的培养条件下,可同时以良好的水平产生这些酶。三种酶的最适 pH 和温度分别为 5.0 和 65°C,在 50°C 下保持 72 小时、60°C(β-葡萄糖苷酶)或 65°C(β-木糖苷酶和木聚糖酶)下保持 120 分钟的全部活性。与里氏木霉纤维素酶混合后,C. graminicola 粗提物在 48 小时内将原甘蔗渣水解为葡萄糖,产率为 33.1%,表明其具有很好的潜力,可用于组成高效的木质纤维素材料水解酶制剂。