Suppr超能文献

利用优化生成模型推断 2 型糖尿病患者并发症的进展。

Using an optimized generative model to infer the progression of complications in type 2 diabetes patients.

机构信息

Shanghai Key Laboratory of Data Science, School of Computer Science, Fudan University, Shanghai, 200438, China.

College of Computer Science and Engineering, Northwest Normal University, Gansu, 730070, China.

出版信息

BMC Med Inform Decis Mak. 2022 Jul 1;22(1):174. doi: 10.1186/s12911-022-01915-5.

Abstract

BACKGROUND

People live a long time in pre-diabetes/early diabetes without a formal diagnosis or management. Heterogeneity of progression coupled with deficiencies in electronic health records related to incomplete data, discrete events, and irregular event intervals make identification of pre-diabetes and critical points of diabetes progression challenging.

METHODS

We utilized longitudinal electronic health records of 9298 patients with type 2 diabetes or prediabetes from 2005 to 2016 from a large regional healthcare delivery network in China. We optimized a generative Markov-Bayesian-based model to generate 5000 synthetic illness trajectories. The synthetic data were manually reviewed by endocrinologists.

RESULTS

We build an optimized generative progression model for type 2 diabetes using anchor information to reduce the number of parameters learning in the third layer of the model from [Formula: see text] to [Formula: see text], where [Formula: see text] is the number of clinical findings, [Formula: see text] is the number of complications, [Formula: see text] is the number of anchors. Based on this model, we infer the relationships between progression stages, the onset of complication categories, and the associated diagnoses during the whole progression of type 2 diabetes using electronic health records.

DISCUSSION

Our findings indicate that 55.3% of single complications and 31.8% of complication patterns could be predicted early and managed appropriately to potentially delay (as it is a progressive disease) or prevented (by lifestyle modifications that keep patient from developing/triggering diabetes in the first place).

CONCLUSIONS

The full type 2 diabetes patient trajectories generated by the chronic disease progression model can counter a lack of real-world evidence of desired longitudinal timeframe while facilitating population health management.

摘要

背景

人们在糖尿病前期/早期糖尿病阶段,即使没有正式的诊断或管理,也能长时间生存。进展的异质性,加上电子健康记录中与数据不完整、离散事件和不规则事件间隔相关的缺陷,使得识别糖尿病前期和糖尿病进展的关键点变得具有挑战性。

方法

我们利用了来自中国一个大型区域医疗服务网络的 9298 名 2 型糖尿病或糖尿病前期患者的纵向电子健康记录,从 2005 年到 2016 年。我们优化了一个基于生成式马尔可夫贝叶斯的模型,生成了 5000 个合成疾病轨迹。这些合成数据由内分泌学家进行了手动审查。

结果

我们使用锚定信息为 2 型糖尿病构建了一个优化的生成式进展模型,从而将模型第三层的参数学习数量从[公式:见文本]减少到[公式:见文本],其中[公式:见文本]是临床发现的数量,[公式:见文本]是并发症的数量,[公式:见文本]是锚定的数量。基于该模型,我们利用电子健康记录推断了 2 型糖尿病进展阶段、并发症类别发生和相关诊断之间的关系。

讨论

我们的研究结果表明,55.3%的单一并发症和 31.8%的并发症模式可以早期预测,并进行适当的管理,以潜在地延缓(因为这是一种进展性疾病)或预防(通过生活方式的改变,使患者在第一时间不发生/触发糖尿病)。

结论

慢性疾病进展模型生成的完整 2 型糖尿病患者轨迹可以弥补理想纵向时间框架的真实世界证据的缺乏,同时促进人群健康管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6e/9250218/716650565994/12911_2022_1915_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验