Suppr超能文献

基于机制的细胞内量子点形成的可控性:谷胱甘肽代谢途径的作用。

Mechanism-oriented controllability of intracellular quantum dots formation: the role of glutathione metabolic pathway.

机构信息

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, State Key Laboratory of Virology, Wuhan 430072, P. R. China.

出版信息

ACS Nano. 2013 Mar 26;7(3):2240-8. doi: 10.1021/nn305346a. Epub 2013 Feb 15.

Abstract

Microbial cells have shown a great potential to biosynthesize inorganic nanoparticles within their orderly regulated intracellular environment. However, very little is known about the mechanism of nanoparticle biosynthesis. Therefore, it is difficult to control intracellular synthesis through the manipulation of biological processes. Here, we present a mechanism-oriented strategy for controlling the biosynthesis of fluorescent CdSe quantum dots (QDs) by means of metabolic engineering in yeast cells. Using genetic techniques, we demonstrated that the glutathione metabolic pathway controls the intracellular CdSe QD formation. Inspired from this mechanism, the controllability of CdSe QD yield was realized through engineering the glutathione metabolism in genetically modified yeast cells. The yeast cells were homogeneously transformed into more efficient cell-factories at the single-cell level, providing a specific way to direct the cellular metabolism toward CdSe QD formation. This work could provide the foundation for the future development of nanomaterial biosynthesis.

摘要

微生物细胞在其有序调节的细胞内环境中显示出了巨大的潜力,可以生物合成无机纳米粒子。然而,对于纳米粒子生物合成的机制却知之甚少。因此,通过生物过程的操纵来控制细胞内合成是很困难的。在这里,我们提出了一种基于机制的策略,通过酵母细胞中的代谢工程来控制荧光 CdSe 量子点(QD)的生物合成。我们利用遗传技术证明,谷胱甘肽代谢途径控制着细胞内 CdSe QD 的形成。受此机制的启发,通过对遗传修饰酵母细胞中的谷胱甘肽代谢进行工程改造,实现了 CdSe QD 产率的可控性。在单细胞水平上,酵母细胞被均匀地转化为更高效的细胞工厂,为将细胞代谢定向到 CdSe QD 形成提供了一种特定的方法。这项工作为未来的纳米材料生物合成发展奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验