Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai-cho, 657-8501, Nada, Kobe, Japan.
Nanoscale Res Lett. 2013 Feb 12;8(1):70. doi: 10.1186/1556-276X-8-70.
Room-temperature extracellular biosynthesis of gold nanoparticles (Au NPs) was achieved using Escherichia coli K12 cells without the addition of growth media, pH adjustments or inclusion of electron donors/stabilizing agents. The resulting nanoparticles were analysed by ultraviolet-visible (UV-vis) spectrophotometry, atomic force microscopy, transmission electron microscopy and X-ray diffraction. Highly dispersed gold nanoplates were achieved in the order of around 50 nm. Further, the underlying mechanism was found to be controlled by certain extracellular membrane-bound proteins, which was confirmed by Fourier transformation-infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis. We observed that certain membrane-bound peptides are responsible for reduction and subsequent stabilization of Au NPs (confirmed by zeta potential analysis). Upon de-activation of these proteins, no nanoparticle formation was observed. Also, we prepared a novel biocatalyst with Au NPs attached to the membrane-bound fraction of E. coli K12 cells serving as an efficient heterogeneous catalyst in complete reduction of 4-nitrophenol in the presence of NaBH4 which was studied with UV-vis spectroscopy. This is the first report on bacterial membrane-Au NP nanobiocomposite serving as an efficient heterogeneous catalyst in complete reduction of nitroaromatic pollutant in water.
利用大肠杆菌 K12 细胞,在不添加生长培养基、不进行 pH 调整、不包含电子供体/稳定剂的情况下,实现了室温下细胞外合成金纳米粒子(Au NPs)。通过紫外-可见(UV-vis)分光光度法、原子力显微镜、透射电子显微镜和 X 射线衍射对所得纳米粒子进行了分析。实现了高度分散的金纳米板,尺寸约为 50nm。此外,通过傅里叶变换红外光谱和十二烷基硫酸钠聚丙烯酰胺凝胶电泳证实,该机制受某些细胞外膜结合蛋白的控制。我们观察到某些膜结合肽负责 Au NPs 的还原和随后的稳定(通过zeta 电位分析证实)。当这些蛋白质失活时,没有观察到纳米颗粒的形成。此外,我们制备了一种新型生物催化剂,将 Au NPs 附着在大肠杆菌 K12 细胞膜结合部分,在 NaBH4 的存在下作为高效的多相催化剂,用于完全还原 4-硝基苯酚,这一点通过 UV-vis 光谱进行了研究。这是第一个关于细菌膜-Au NP 纳米生物复合材料作为高效多相催化剂,用于完全还原水中硝基芳烃污染物的报告。