Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.
J Am Chem Soc. 2013 Mar 6;135(9):3539-49. doi: 10.1021/ja311058q. Epub 2013 Feb 25.
The development of multidrug resistant (MDR) and extensively drug resistant (XDR) forms of tuberculosis (TB) has stimulated research efforts globally to expand the new drug pipeline. Nitroaromatic compounds, including 1,3-benzothiazin-4-ones (BTZs) and related agents, are a promising new class for the treatment of TB. Research has shown that the nitroso intermediates of BTZs that are generated in vivo cause suicide inhibition of decaprenylphosphoryl-β-D-ribose 2' oxidase (DprE1), which is responsible for cell wall arabinogalactan biosynthesis. We have designed and synthesized novel anti-TB agents inspired from BTZs and other nitroaromatic compounds. Computational studies indicated that the unsubstituted aromatic carbons of BTZ043 and related nitroaromatic compounds are the most electron-deficient and might be prone to nucleophilic attack. Our chemical studies on BTZ043 and the additional nitroaromatic compounds synthesized by us and others confirmed the postulated reactivity. The results indicate that nucleophiles such as thiolates, cyanide, and hydride induce nonenzymatic reduction of the nitro groups present in these compounds to the corresponding nitroso intermediates by addition at the unsubstituted electron-deficient aromatic carbon present in these compounds. Furthermore, we demonstrate here that these compounds are good candidates for the classical von Richter reaction. These chemical studies offer an alternate hypothesis for the mechanism of action of nitroaromatic anti-TB agents, in that the cysteine thiol(ate) or a hydride source at the active site of DprE1 may trigger the reduction of the nitro groups in a manner similar to the von Richter reaction to the nitroso intermediates, to initiate the inhibition of DprE1.
耐多药(MDR)和广泛耐药(XDR)形式的结核病(TB)的发展刺激了全球的研究工作,以扩大新药管道。硝基芳香族化合物,包括 1,3-苯并噻嗪-4-ones(BTZs)和相关的试剂,是治疗结核病的一个很有前途的新类别。研究表明,BTZs 在体内产生的亚硝基中间体导致烯醇磷酸-β-D-核糖 2'氧化酶(DprE1)自杀抑制,该酶负责细胞壁阿拉伯半乳聚糖的生物合成。我们受到 BTZs 和其他硝基芳香族化合物的启发,设计并合成了新型抗结核药物。计算研究表明,BTZ043 和其他硝基芳香族化合物的未取代芳族碳原子是最缺电子的,可能容易受到亲核攻击。我们对 BTZ043 的化学研究以及我们和其他人合成的其他额外的硝基芳香族化合物证实了假设的反应性。结果表明,亲核试剂如硫醇盐、氰化物和氢化物通过在这些化合物中存在的未取代缺电子芳族碳上的加成,诱导这些化合物中存在的硝基非酶还原为相应的亚硝基中间体。此外,我们在这里证明这些化合物是经典的冯·里希特反应的良好候选物。这些化学研究为硝基芳香族抗结核药物的作用机制提供了另一种假设,即在 DprE1 的活性部位的半胱氨酸硫醇(盐)或氢源可能以类似于冯·里希特反应的方式触发硝基的还原为亚硝基中间体,以启动 DprE1 的抑制。