Suppr超能文献

纳米颗粒的几何形状和表面取向影响细胞摄取方式。

Nanoparticle geometry and surface orientation influence mode of cellular uptake.

机构信息

Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, 36 S. Wasatch Drive, Salt Lake City, Utah 84112, United States.

出版信息

ACS Nano. 2013 Mar 26;7(3):1961-73. doi: 10.1021/nn304439f. Epub 2013 Feb 22.

Abstract

In order to engineer safer nanomaterials, there is a need to understand, systematically evaluate, and develop constructs with appropriate cellular uptake and intracellular fates. The overall goal of this project is to determine the uptake patterns of silica nanoparticle geometries in model cells, in order to aid in the identification of the role of geometry on cellular uptake and transport. In our experiments we observed a significant difference in the viability of two phenotypes of primary macrophages; immortalized macrophages exhibited similar patterns. However, both primary and immortalized epithelial cells did not exhibit toxicity profiles. Interestingly uptake of these geometries in all cell lines exhibited very different time-dependent patterns. A screening of a series of chemical inhibitors of endocytosis was performed to isolate the uptake mechanisms of the different particles. The results show that all geometries exhibit very different uptake profiles and that this may be due to the orientation of the nanoparticles when they interact with the cell surface. Additionally, evidence suggests that these uptake patterns initialize different downstream cellular pathways, dependent on cell type and phenotype.

摘要

为了设计更安全的纳米材料,我们需要了解、系统评估并开发具有适当细胞摄取和细胞内命运的结构。本项目的总体目标是确定模型细胞中不同形状的二氧化硅纳米颗粒的摄取模式,以便于确定形状对细胞摄取和转运的作用。在我们的实验中,我们观察到两种原代巨噬细胞表型的活力有显著差异;永生化巨噬细胞表现出相似的模式。然而,原代和永生化上皮细胞均未表现出毒性特征。有趣的是,所有细胞系对这些结构的摄取表现出非常不同的时变模式。我们对一系列胞吞作用的化学抑制剂进行了筛选,以分离不同颗粒的摄取机制。结果表明,所有结构都表现出非常不同的摄取模式,这可能是由于纳米颗粒与细胞表面相互作用时的取向不同。此外,有证据表明,这些摄取模式会根据细胞类型和表型启动不同的下游细胞途径。

相似文献

1
Nanoparticle geometry and surface orientation influence mode of cellular uptake.
ACS Nano. 2013 Mar 26;7(3):1961-73. doi: 10.1021/nn304439f. Epub 2013 Feb 22.
4
Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators.
Acc Chem Res. 2020 Aug 18;53(8):1545-1556. doi: 10.1021/acs.accounts.0c00280. Epub 2020 Jul 15.
5
Impact of silica nanoparticle design on cellular toxicity and hemolytic activity.
ACS Nano. 2011 Jul 26;5(7):5717-28. doi: 10.1021/nn2013904. Epub 2011 Jun 8.
6
Differential cytotoxic and inflammatory potency of amorphous silicon dioxide nanoparticles of similar size in multiple cell lines.
Nanotoxicology. 2017 Mar;11(2):223-235. doi: 10.1080/17435390.2017.1287313. Epub 2017 Feb 20.
7
Effects of the presence or absence of a protein corona on silica nanoparticle uptake and impact on cells.
ACS Nano. 2012 Jul 24;6(7):5845-57. doi: 10.1021/nn300223w. Epub 2012 Jun 29.
8
The cytotoxic activity of amorphous silica nanoparticles is mainly influenced by surface area and not by aggregation.
Toxicol Lett. 2011 Oct 10;206(2):197-203. doi: 10.1016/j.toxlet.2011.07.013. Epub 2011 Jul 22.
10
The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function.
Biomaterials. 2010 Jan;31(3):438-48. doi: 10.1016/j.biomaterials.2009.09.060. Epub 2009 Oct 1.

引用本文的文献

1
High-Curvature Features on Branched Nanoconstructs Circumvent Protein Corona Interference.
ACS Appl Mater Interfaces. 2025 Mar 12;17(10):15187-15195. doi: 10.1021/acsami.5c00725. Epub 2025 Feb 27.
5
Cuboids Prevail When Unraveling the Influence of Microchip Geometry on Macrophage Interactions and Metabolic Responses.
ACS Biomater Sci Eng. 2024 Sep 9;10(9):5689-5700. doi: 10.1021/acsbiomaterials.4c00849. Epub 2024 Aug 21.
6
Exploring and Analyzing the Systemic Delivery Barriers for Nanoparticles.
Adv Funct Mater. 2024 Feb 19;34(8). doi: 10.1002/adfm.202308446. Epub 2023 Nov 20.
7
Nanoparticle Anisotropy Increases Targeting Interactions on Live-Cell Membranes.
ACS Nano. 2024 May 14;18(19):12537-12546. doi: 10.1021/acsnano.4c02700. Epub 2024 Apr 29.
8
The flow of anisotropic nanoparticles in solution and in blood.
Exploration (Beijing). 2023 Oct 10;3(6):20220075. doi: 10.1002/EXP.20220075. eCollection 2023 Dec.
9
Synthesis and evaluation of gene delivery vectors based on PEI-modified metal-organic framework (MOF) nanoparticles.
Iran J Basic Med Sci. 2024;27(2):203-213. doi: 10.22038/IJBMS.2023.71892.15644.
10
Biomimetic Systems Involving Macrophages and Their Potential for Targeted Drug Delivery.
Biomimetics (Basel). 2023 Nov 12;8(7):543. doi: 10.3390/biomimetics8070543.

本文引用的文献

1
The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity.
Acc Chem Res. 2013 Mar 19;46(3):743-9. doi: 10.1021/ar300039j. Epub 2012 Jul 11.
2
Monosaccharides versus PEG-functionalized NPs: influence in the cellular uptake.
ACS Nano. 2012 Feb 28;6(2):1565-77. doi: 10.1021/nn204543c. Epub 2012 Jan 9.
3
Isolation, cultivation, and application of human alveolar epithelial cells.
Methods Mol Biol. 2012;806:31-42. doi: 10.1007/978-1-61779-367-7_3.
4
Receptor-mediated endocytosis of nanoparticles of various shapes.
Nano Lett. 2011 Dec 14;11(12):5391-5. doi: 10.1021/nl2030213. Epub 2011 Nov 7.
5
Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry.
Macromol Rapid Commun. 2010 Jan 18;31(2):142-8. doi: 10.1002/marc.200900592. Epub 2009 Dec 8.
7
The PI3K/Akt pathway is involved in early infection of some exogenous avian leukosis viruses.
J Gen Virol. 2011 Jul;92(Pt 7):1688-1697. doi: 10.1099/vir.0.030866-0. Epub 2011 Mar 30.
8
Silica nanoconstruct cellular toleration threshold in vitro.
J Control Release. 2011 Jul 15;153(1):40-8. doi: 10.1016/j.jconrel.2011.02.017. Epub 2011 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验