Suppr超能文献

基于模型的逐试 p300 振幅波动方法。

A model-based approach to trial-by-trial p300 amplitude fluctuations.

机构信息

Institute for Communications Technology, Technische Universität Braunschweig Braunschweig, Germany.

出版信息

Front Hum Neurosci. 2013 Feb 8;6:359. doi: 10.3389/fnhum.2012.00359. eCollection 2012.

Abstract

It has long been recognized that the amplitude of the P300 component of event-related brain potentials is sensitive to the degree to which eliciting stimuli are surprising to the observers (Donchin, 1981). While Squires et al. (1976) showed and modeled dependencies of P300 amplitudes from observed stimuli on various time scales, Mars et al. (2008) proposed a computational model keeping track of stimulus probabilities on a long-term time scale. We suggest here a computational model which integrates prior information with short-term, long-term, and alternation-based experiential influences on P300 amplitude fluctuations. To evaluate the new model, we measured trial-by-trial P300 amplitude fluctuations in a simple two-choice response time task, and tested the computational models of trial-by-trial P300 amplitudes using Bayesian model evaluation. The results reveal that the new digital filtering (DIF) model provides a superior account of the trial-by-trial P300 amplitudes when compared to both Squires et al.'s (1976) model, and Mars et al.'s (2008) model. We show that the P300-generating system can be described as two parallel first-order infinite impulse response (IIR) low-pass filters and an additional fourth-order finite impulse response (FIR) high-pass filter. Implications of the acquired data are discussed with regard to the neurobiological distinction between short-term, long-term, and working memory as well as from the point of view of predictive coding models and Bayesian learning theories of cortical function.

摘要

长期以来,人们一直认为事件相关脑电位中的 P300 成分的幅度对诱发刺激对观察者的惊讶程度敏感(Donchin,1981)。虽然 Squires 等人(1976)展示并建模了 P300 幅度与观察到的刺激之间的各种时间尺度的依赖性,但 Mars 等人(2008)提出了一种计算模型,该模型在长时间尺度上跟踪刺激的概率。我们在这里提出了一种计算模型,该模型将先验信息与短期、长期和基于交替的经验影响整合到 P300 幅度波动中。为了评估新模型,我们在一个简单的二选一反应时任务中测量了逐次试验的 P300 幅度波动,并使用贝叶斯模型评估测试了逐次试验 P300 幅度的计算模型。结果表明,与 Squires 等人(1976)的模型和 Mars 等人(2008)的模型相比,新的数字滤波(DIF)模型为逐次试验的 P300 幅度提供了更好的解释。我们表明,P300 产生系统可以描述为两个并行的一阶无限脉冲响应(IIR)低通滤波器和一个附加的四阶有限脉冲响应(FIR)高通滤波器。所获得的数据的含义从短期、长期和工作记忆的神经生物学区别以及从预测编码模型和皮质功能的贝叶斯学习理论的角度进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c955/3567611/b2db6981d31c/fnhum-06-00359-g001.jpg

相似文献

1
A model-based approach to trial-by-trial p300 amplitude fluctuations.
Front Hum Neurosci. 2013 Feb 8;6:359. doi: 10.3389/fnhum.2012.00359. eCollection 2012.
3
Violent offending predicts P300 amplitude.
Int J Psychophysiol. 2007 Nov;66(2):161-7. doi: 10.1016/j.ijpsycho.2007.03.021. Epub 2007 May 3.
4
Influence of education level on design-induced N170 and P300 components of event related potentials in the human brain.
J Integr Neurosci. 2014 Mar;13(1):71-88. doi: 10.1142/S0219635214500058. Epub 2014 Mar 13.
5
Can working memory predict target-to-target interval effects in the P300?
Int J Psychophysiol. 2013 Sep;89(3):399-408. doi: 10.1016/j.ijpsycho.2013.07.011. Epub 2013 Aug 6.
6
Filtering Eye-Tracking Data From an EyeLink 1000: Comparing Heuristic, Savitzky-Golay, IIR and FIR Digital Filters.
J Eye Mov Res. 2023 Oct 19;14(3). doi: 10.16910/jemr.14.3.6. eCollection 2021.
7
A computational model for generation of the P300 evoked potential component.
J Integr Neurosci. 2012 Sep;11(3):277-94. doi: 10.1142/S0219635212500215. Epub 2012 Sep 13.
8
Trait and state aspects of P300 amplitude reduction in schizophrenia: a retrospective longitudinal study.
Biol Psychiatry. 2000 Mar 1;47(5):434-49. doi: 10.1016/s0006-3223(99)00277-2.
9
Prior probabilities modulate cortical surprise responses: A study of event-related potentials.
Brain Cogn. 2016 Jul;106:78-89. doi: 10.1016/j.bandc.2016.04.011. Epub 2016 Jun 4.
10
Relationship of P300 single-trial responses with reaction time and preceding stimulus sequence.
Int J Psychophysiol. 2006 Aug;61(2):244-52. doi: 10.1016/j.ijpsycho.2005.10.015. Epub 2005 Dec 20.

引用本文的文献

1
Active Inference in Psychology and Psychiatry: Progress to Date?
Entropy (Basel). 2024 Sep 30;26(10):833. doi: 10.3390/e26100833.
2
Toward a computational role for locus coeruleus/norepinephrine arousal systems.
Curr Opin Behav Sci. 2024 Oct;59. doi: 10.1016/j.cobeha.2024.101407. Epub 2024 Jun 19.
3
Model-Based Approaches to Investigating Mismatch Responses in Schizophrenia.
Clin EEG Neurosci. 2025 Jan;56(1):8-21. doi: 10.1177/15500594241253910. Epub 2024 May 15.
4
Electrophysiological evidence for sensitization effects elicited by concurrent social threats.
Sci Rep. 2023 Jul 28;13(1):12285. doi: 10.1038/s41598-023-39456-0.
5
Neurophysiological markers of successful learning in healthy aging.
Geroscience. 2023 Oct;45(5):2873-2896. doi: 10.1007/s11357-023-00811-8. Epub 2023 May 12.
6
Spatiotemporal Signatures of Surprise Captured by Magnetoencephalography.
Front Syst Neurosci. 2022 Jun 13;16:865453. doi: 10.3389/fnsys.2022.865453. eCollection 2022.
7
Imprecise Predictive Coding Is at the Core of Classical Schizophrenia.
Front Hum Neurosci. 2022 Mar 3;16:818711. doi: 10.3389/fnhum.2022.818711. eCollection 2022.
8
How predictability affects habituation to novelty.
PLoS One. 2021 Jun 1;16(6):e0237278. doi: 10.1371/journal.pone.0237278. eCollection 2021.
9
Neural surprise in somatosensory Bayesian learning.
PLoS Comput Biol. 2021 Feb 2;17(2):e1008068. doi: 10.1371/journal.pcbi.1008068. eCollection 2021 Feb.

本文引用的文献

1
A supramodal accumulation-to-bound signal that determines perceptual decisions in humans.
Nat Neurosci. 2012 Dec;15(12):1729-35. doi: 10.1038/nn.3248. Epub 2012 Oct 28.
2
Evidence for neural encoding of Bayesian surprise in human somatosensation.
Neuroimage. 2012 Aug 1;62(1):177-88. doi: 10.1016/j.neuroimage.2012.04.050. Epub 2012 May 3.
4
Comparing dynamic causal models using AIC, BIC and free energy.
Neuroimage. 2012 Jan 2;59(1):319-30. doi: 10.1016/j.neuroimage.2011.07.039. Epub 2011 Jul 27.
5
Time scales of representation in the human brain: weighing past information to predict future events.
Front Hum Neurosci. 2011 Apr 26;5:37. doi: 10.3389/fnhum.2011.00037. eCollection 2011.
6
Top-down effects on early visual processing in humans: a predictive coding framework.
Neurosci Biobehav Rev. 2011 Apr;35(5):1237-53. doi: 10.1016/j.neubiorev.2010.12.011. Epub 2010 Dec 24.
7
Expectation and surprise determine neural population responses in the ventral visual stream.
J Neurosci. 2010 Dec 8;30(49):16601-8. doi: 10.1523/JNEUROSCI.2770-10.2010.
8
When it's time for a change: failures to track context in schizophrenia.
Int J Psychophysiol. 2010 Oct;78(1):3-13. doi: 10.1016/j.ijpsycho.2010.05.005. Epub 2010 May 24.
9
Predictive coding as a model of response properties in cortical area V1.
J Neurosci. 2010 Mar 3;30(9):3531-43. doi: 10.1523/JNEUROSCI.4911-09.2010.
10
Of bits and wows: A Bayesian theory of surprise with applications to attention.
Neural Netw. 2010 Jun;23(5):649-66. doi: 10.1016/j.neunet.2009.12.007. Epub 2009 Dec 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验