Institute for Communications Technology, Technische Universität Braunschweig Braunschweig, Germany.
Front Hum Neurosci. 2013 Feb 8;6:359. doi: 10.3389/fnhum.2012.00359. eCollection 2012.
It has long been recognized that the amplitude of the P300 component of event-related brain potentials is sensitive to the degree to which eliciting stimuli are surprising to the observers (Donchin, 1981). While Squires et al. (1976) showed and modeled dependencies of P300 amplitudes from observed stimuli on various time scales, Mars et al. (2008) proposed a computational model keeping track of stimulus probabilities on a long-term time scale. We suggest here a computational model which integrates prior information with short-term, long-term, and alternation-based experiential influences on P300 amplitude fluctuations. To evaluate the new model, we measured trial-by-trial P300 amplitude fluctuations in a simple two-choice response time task, and tested the computational models of trial-by-trial P300 amplitudes using Bayesian model evaluation. The results reveal that the new digital filtering (DIF) model provides a superior account of the trial-by-trial P300 amplitudes when compared to both Squires et al.'s (1976) model, and Mars et al.'s (2008) model. We show that the P300-generating system can be described as two parallel first-order infinite impulse response (IIR) low-pass filters and an additional fourth-order finite impulse response (FIR) high-pass filter. Implications of the acquired data are discussed with regard to the neurobiological distinction between short-term, long-term, and working memory as well as from the point of view of predictive coding models and Bayesian learning theories of cortical function.
长期以来,人们一直认为事件相关脑电位中的 P300 成分的幅度对诱发刺激对观察者的惊讶程度敏感(Donchin,1981)。虽然 Squires 等人(1976)展示并建模了 P300 幅度与观察到的刺激之间的各种时间尺度的依赖性,但 Mars 等人(2008)提出了一种计算模型,该模型在长时间尺度上跟踪刺激的概率。我们在这里提出了一种计算模型,该模型将先验信息与短期、长期和基于交替的经验影响整合到 P300 幅度波动中。为了评估新模型,我们在一个简单的二选一反应时任务中测量了逐次试验的 P300 幅度波动,并使用贝叶斯模型评估测试了逐次试验 P300 幅度的计算模型。结果表明,与 Squires 等人(1976)的模型和 Mars 等人(2008)的模型相比,新的数字滤波(DIF)模型为逐次试验的 P300 幅度提供了更好的解释。我们表明,P300 产生系统可以描述为两个并行的一阶无限脉冲响应(IIR)低通滤波器和一个附加的四阶有限脉冲响应(FIR)高通滤波器。所获得的数据的含义从短期、长期和工作记忆的神经生物学区别以及从预测编码模型和皮质功能的贝叶斯学习理论的角度进行了讨论。