Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina, USA.
PLoS One. 2013;8(2):e55871. doi: 10.1371/journal.pone.0055871. Epub 2013 Feb 7.
The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.
研究基因关系及其对生物功能和表型的影响是系统生物学的一个重点。使用微阵列表达谱构建的基因共表达网络是发现和解释基因关系的一种技术。随机矩阵理论 (RMT) 等知识独立的阈值技术可用于识别有意义的关系。在阈值网络中高度连接的基因然后被分成模块,这些模块提供了对其集体功能的深入了解。虽然已经表明共表达网络具有生物学相关性,但尚未确定给定网络在输入样本集发生扰动时在何种程度上具有功能稳健性。对于这样的测试,需要数百个网络,因此需要一种快速构建这些网络的工具。为了检查具有不同输入的网络的功能稳健性,我们增强了现有的 RMT 实现以提高可扩展性,并测试了人类 (Homo sapiens)、水稻 (Oryza sativa) 和 budding 酵母 (Saccharomyces cerevisiae) 的功能稳健性。我们证明了网络构建时间和计算需求的显著减少,并表明尽管网络之间的全局属性存在一些差异,但功能相似性仍然很高。此外,RMT 阈值化的共表达网络所捕获的生物学功能具有高度稳健性。