Suppr超能文献

NetExtractor:利用差异表达的高互信息二元RNA谱提取小脑组织基因调控网络

NetExtractor: Extracting a Cerebellar Tissue Gene Regulatory Network Using Differentially Expressed High Mutual Information Binary RNA Profiles.

作者信息

Husain Benafsh, Hickman Allison R, Hang Yuqing, Shealy Benjamin T, Sapra Karan, Feltus F Alex

机构信息

Biomedical Data Science and Informatics Program, Clemson University, Clemson, SC.

Department of Genetics and Biochemistry, Clemson University, Clemson, SC.

出版信息

G3 (Bethesda). 2020 Sep 2;10(9):2953-2963. doi: 10.1534/g3.120.401067.

Abstract

Bigenic expression relationships are conventionally defined based on metrics such as Pearson or Spearman correlation that cannot typically detect latent, non-linear dependencies or require the relationship to be monotonic. Further, the combination of intrinsic and extrinsic noise as well as embedded relationships between sample sub-populations reduces the probability of extracting biologically relevant edges during the construction of gene co-expression networks (GCNs). In this report, we address these problems via our NetExtractor algorithm. NetExtractor examines all pairwise gene expression profiles first with Gaussian mixture models (GMMs) to identify sample sub-populations followed by mutual information (MI) analysis that is capable of detecting non-linear differential bigenic expression relationships. We applied NetExtractor to brain tissue RNA profiles from the Genotype-Tissue Expression (GTEx) project to obtain a brain tissue specific gene expression relationship network centered on cerebellar and cerebellar hemisphere enriched edges. We leveraged the PsychENCODE pre-frontal cortex (PFC) gene regulatory network (GRN) to construct a cerebellar cortex (cerebellar) GRN associated with transcriptionally active regions in cerebellar tissue. Thus, we demonstrate the utility of our NetExtractor approach to detect biologically relevant and novel non-linear binary gene relationships.

摘要

双基因表达关系通常是基于诸如皮尔逊或斯皮尔曼相关性等指标来定义的,这些指标通常无法检测潜在的非线性依赖性,或者要求关系是单调的。此外,内在和外在噪声的组合以及样本亚群之间的内在关系降低了在构建基因共表达网络(GCN)过程中提取生物学相关边的概率。在本报告中,我们通过我们的NetExtractor算法解决这些问题。NetExtractor首先使用高斯混合模型(GMM)检查所有成对的基因表达谱,以识别样本亚群,然后进行互信息(MI)分析,该分析能够检测非线性差异双基因表达关系。我们将NetExtractor应用于基因型-组织表达(GTEx)项目的脑组织RNA谱,以获得一个以小脑和小脑半球富集边为中心的脑组织特异性基因表达关系网络。我们利用精神基因组计划前额叶皮层(PFC)基因调控网络(GRN)构建了与小脑组织中转录活跃区域相关的小脑皮层(小脑)GRN。因此,我们证明了我们的NetExtractor方法在检测生物学相关和新颖的非线性二元基因关系方面的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4b2/7466957/3a0acd59ba2c/2953f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验