Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada; Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
J Biol Chem. 2013 Apr 5;288(14):9686-9695. doi: 10.1074/jbc.M112.437483. Epub 2013 Feb 14.
Many proteins function by changing conformation in response to ligand binding or changes in other factors in their environment. Any change in the sequence of a protein, for example during evolution, which alters the relative free energies of the different functional conformations changes the conditions under which the protein will function. Voltage-gated ion channels are membrane proteins that open and close an ion-selective pore in response to changes in transmembrane voltage. The charged S4 transmembrane helix transduces changes in transmembrane voltage into a change in protein internal energy by interacting with the rest of the channel protein through a combination of non-covalent interactions between adjacent helices and covalent interactions along the peptide backbone. However, the structural basis for the wide variation in the V50 value between different voltage-gated potassium channels is not well defined. To test the role of the loop linking the S3 helix and the S4 helix in voltage sensitivity, we have constructed a set of mutants of the rat Kv1.2 channel that vary solely in the length and composition of the extracellular loop that connects S4 to S3. We evaluated the effect of these different loop substitutions on the voltage sensitivity of the channel and compared these experimental results with molecular dynamics simulations of the loop structures. Here, we show that this loop has a significant role in setting the precise V50 of activation in Kv1 family channels.
许多蛋白质通过改变构象来响应配体结合或环境中其他因素的变化而发挥作用。例如,蛋白质序列的任何变化(例如在进化过程中),改变了不同功能构象的相对自由能,从而改变了蛋白质发挥作用的条件。电压门控离子通道是一种膜蛋白,它会响应跨膜电压的变化而打开和关闭离子选择性孔道。带电荷的 S4 跨膜螺旋通过与通道蛋白的其余部分相互作用,将跨膜电压的变化转化为蛋白质内部能量的变化,这种相互作用是通过相邻螺旋之间的非共价相互作用和肽主链上的共价相互作用的组合来实现的。然而,不同电压门控钾通道之间 V50 值差异很大的结构基础尚未得到很好的定义。为了测试连接 S3 螺旋和 S4 螺旋的环在电压敏感性中的作用,我们构建了一组大鼠 Kv1.2 通道的突变体,这些突变体仅在连接 S4 和 S3 的细胞外环的长度和组成上有所不同。我们评估了这些不同环取代对通道电压敏感性的影响,并将这些实验结果与环结构的分子动力学模拟进行了比较。在这里,我们表明该环在设置 Kv1 家族通道精确的激活 V50 方面具有重要作用。