Research Area Biotechnology and Microbiology, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorferstrasse 1a, A-1060, Vienna, Austria.
BMC Genomics. 2013 Feb 22;14:121. doi: 10.1186/1471-2164-14-121.
Trichoderma is a genus of mycotrophic filamentous fungi (teleomorph Hypocrea) which possess a bright variety of biotrophic and saprotrophic lifestyles. The ability to parasitize and/or kill other fungi (mycoparasitism) is used in plant protection against soil-borne fungal diseases (biological control, or biocontrol). To investigate mechanisms of mycoparasitism, we compared the transcriptional responses of cosmopolitan opportunistic species and powerful biocontrol agents Trichoderma atroviride and T. virens with tropical ecologically restricted species T. reesei during confrontations with a plant pathogenic fungus Rhizoctonia solani.
The three Trichoderma spp. exhibited a strikingly different transcriptomic response already before physical contact with alien hyphae. T. atroviride expressed an array of genes involved in production of secondary metabolites, GH16 ß-glucanases, various proteases and small secreted cysteine rich proteins. T. virens, on the other hand, expressed mainly the genes for biosynthesis of gliotoxin, respective precursors and also glutathione, which is necessary for gliotoxin biosynthesis. In contrast, T. reesei increased the expression of genes encoding cellulases and hemicellulases, and of the genes involved in solute transport. The majority of differentially regulated genes were orthologues present in all three species or both in T. atroviride and T. virens, indicating that the regulation of expression of these genes is different in the three Trichoderma spp. The genes expressed in all three fungi exhibited a nonrandom genomic distribution, indicating a possibility for their regulation via chromatin modification.
This genome-wide expression study demonstrates that the initial Trichoderma mycotrophy has differentiated into several alternative ecological strategies ranging from parasitism to predation and saprotrophy. It provides first insights into the mechanisms of interactions between Trichoderma and other fungi that may be exploited for further development of biofungicides.
木霉是一类兼性腐生丝状真菌(有性型为 Hypocrea),具有多种生物营养和腐生生活方式。寄生和/或杀死其他真菌(菌寄生作用)的能力被用于防治土壤传播的真菌病害(生物防治或生物控制)。为了研究菌寄生作用的机制,我们比较了世界性机会主义种和强大的生物防治剂拟康氏木霉和绿色木霉与热带生态限制种里氏木霉在与植物病原菌立枯丝核菌对峙时的转录响应。
这三种木霉在与异源菌丝体物理接触之前就表现出了截然不同的转录组响应。深绿木霉表达了一系列涉及次生代谢产物、GH16β-葡聚糖酶、各种蛋白酶和小分泌半胱氨酸丰富蛋白产生的基因。相比之下,绿色木霉主要表达了产胶质素、相应前体以及谷胱甘肽的基因,谷胱甘肽是胶质素生物合成所必需的。相反,里氏木霉增加了纤维素酶和半纤维素酶以及参与溶质转运的基因的表达。差异调节基因的大多数为所有三种物种或深绿木霉和绿色木霉中都存在的同源物,表明这些基因的表达调控在三种木霉中是不同的。所有三种真菌中表达的基因表现出非随机的基因组分布,表明它们的表达可能通过染色质修饰来调控。
这项全基因组表达研究表明,最初的木霉菌寄生作用已经分化为几种替代的生态策略,从寄生作用到捕食作用和腐生作用。它首次深入了解了木霉与其他真菌相互作用的机制,这些机制可能被进一步开发为生物杀菌剂所利用。