Suppr超能文献

在 opaque 红球菌 PD630 中建立用于脂质生产的纤维二糖利用体系。

Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630.

作者信息

Hetzler Stephan, Steinbüchel Alexander

机构信息

Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany.

出版信息

Appl Environ Microbiol. 2013 May;79(9):3122-5. doi: 10.1128/AEM.03678-12. Epub 2013 Feb 22.

Abstract

Rhodococcus opacus PD630, which is known for its ability to accumulate large amounts of triacylglycerols (TAG), was metabolically engineered, and a cellobiose utilization pathway was introduced. Activities of β-glucosidases were determined, and recombinant strains accumulated fatty acids up to 39.5 ± 5.7% (wt/wt) of cell dry mass from cellobiose.

摘要

以能够积累大量三酰甘油(TAG)而闻名的迟钝红球菌PD630进行了代谢工程改造,并引入了纤维二糖利用途径。测定了β-葡萄糖苷酶的活性,重组菌株从纤维二糖中积累的脂肪酸含量高达细胞干重的39.5±5.7%(重量/重量)。

相似文献

1
Establishment of cellobiose utilization for lipid production in Rhodococcus opacus PD630.
Appl Environ Microbiol. 2013 May;79(9):3122-5. doi: 10.1128/AEM.03678-12. Epub 2013 Feb 22.
2
Saccharification of cellulose by recombinant Rhodococcus opacus PD630 strains.
Appl Environ Microbiol. 2013 Sep;79(17):5159-66. doi: 10.1128/AEM.01214-13. Epub 2013 Jun 21.
3
Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
PLoS Genet. 2011 Sep;7(9):e1002219. doi: 10.1371/journal.pgen.1002219. Epub 2011 Sep 8.
4
Rewiring neutral lipids production for the de novo synthesis of wax esters in Rhodococcus opacus PD630.
J Biotechnol. 2017 Oct 20;260:67-73. doi: 10.1016/j.jbiotec.2017.09.009. Epub 2017 Sep 14.
5
The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation.
Appl Environ Microbiol. 2010 Nov;76(21):7217-25. doi: 10.1128/AEM.00985-10. Epub 2010 Sep 17.
7
Engineering of a xylose metabolic pathway in Rhodococcus strains.
Appl Environ Microbiol. 2012 Aug;78(16):5483-91. doi: 10.1128/AEM.08022-11. Epub 2012 May 25.
8
Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126.
Appl Microbiol Biotechnol. 2000 Aug;54(2):218-23. doi: 10.1007/s002530000395.
9
Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus.
Appl Biochem Biotechnol. 2015 Jan;175(2):1234-46. doi: 10.1007/s12010-014-1305-4. Epub 2014 Nov 7.

引用本文的文献

1
Engineering of RHA1 for utilisation of carboxymethylcellulose.
Heliyon. 2023 Aug 25;9(9):e19511. doi: 10.1016/j.heliyon.2023.e19511. eCollection 2023 Sep.
2
Systems biology and metabolic engineering of Rhodococcus for bioconversion and biosynthesis processes.
Folia Microbiol (Praha). 2021 Oct;66(5):701-713. doi: 10.1007/s12223-021-00892-y. Epub 2021 Jul 3.
3
Biotechnology of Rhodococcus for the production of valuable compounds.
Appl Microbiol Biotechnol. 2020 Oct;104(20):8567-8594. doi: 10.1007/s00253-020-10861-z. Epub 2020 Sep 12.
5
Development of as a chassis for lignin valorization and bioproduction of high-value compounds.
Biotechnol Biofuels. 2019 Aug 5;12:192. doi: 10.1186/s13068-019-1535-3. eCollection 2019.
7
Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production.
J Ind Microbiol Biotechnol. 2016 Nov;43(11):1551-1560. doi: 10.1007/s10295-016-1832-9. Epub 2016 Aug 24.
8
Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals.
AMB Express. 2016 Dec;6(1):35. doi: 10.1186/s13568-016-0207-y. Epub 2016 May 14.

本文引用的文献

1
Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol.
Trends Biotechnol. 2012 May;30(5):274-82. doi: 10.1016/j.tibtech.2012.01.005. Epub 2012 Feb 20.
2
Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered Escherichia coli.
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):19949-54. doi: 10.1073/pnas.1106958108. Epub 2011 Nov 28.
3
Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development.
PLoS Genet. 2011 Sep;7(9):e1002219. doi: 10.1371/journal.pgen.1002219. Epub 2011 Sep 8.
4
High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production.
J Biotechnol. 2010 Jun;147(3-4):212-8. doi: 10.1016/j.jbiotec.2010.04.003. Epub 2010 Apr 20.
5
Energy. Beneficial biofuels--the food, energy, and environment trilemma.
Science. 2009 Jul 17;325(5938):270-1. doi: 10.1126/science.1177970.
6
Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels.
Curr Opin Biotechnol. 2008 Dec;19(6):556-63. doi: 10.1016/j.copbio.2008.10.014. Epub 2008 Nov 10.
7
Identification of a cellobiose utilization gene cluster with cryptic beta-galactosidase activity in Vibrio fischeri.
Appl Environ Microbiol. 2008 Jul;74(13):4059-69. doi: 10.1128/AEM.00190-08. Epub 2008 May 16.
8
How biotech can transform biofuels.
Nat Biotechnol. 2008 Feb;26(2):169-72. doi: 10.1038/nbt0208-169.
9
Mutations that alter the regulation of the chb operon of Escherichia coli allow utilization of cellobiose.
Mol Microbiol. 2007 Dec;66(6):1382-95. doi: 10.1111/j.1365-2958.2007.05999.x. Epub 2007 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验