Suppr超能文献

运用基于抗病毒药物数据生成的药物化学计量模型,显著提高了 HIV 抑制剂疗效预测能力。

Significantly improved HIV inhibitor efficacy prediction employing proteochemometric models generated from antivirogram data.

机构信息

Division of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Leiden, The Netherlands.

出版信息

PLoS Comput Biol. 2013;9(2):e1002899. doi: 10.1371/journal.pcbi.1002899. Epub 2013 Feb 21.

Abstract

Infection with HIV cannot currently be cured; however it can be controlled by combination treatment with multiple anti-retroviral drugs. Given different viral genotypes for virtually each individual patient, the question now arises which drug combination to use to achieve effective treatment. With the availability of viral genotypic data and clinical phenotypic data, it has become possible to create computational models able to predict an optimal treatment regimen for an individual patient. Current models are based only on sequence data derived from viral genotyping; chemical similarity of drugs is not considered. To explore the added value of chemical similarity inclusion we applied proteochemometric models, combining chemical and protein target properties in a single bioactivity model. Our dataset was a large scale clinical database of genotypic and phenotypic information (in total ca. 300,000 drug-mutant bioactivity data points, 4 (NNRTI), 8 (NRTI) or 9 (PI) drugs, and 10,700 (NNRTI) 10,500 (NRTI) or 27,000 (PI) mutants). Our models achieved a prediction error below 0.5 Log Fold Change. Moreover, when directly compared with previously published sequence data, derived models PCM performed better in resistance classification and prediction of Log Fold Change (0.76 log units versus 0.91). Furthermore, we were able to successfully confirm both known and identify previously unpublished, resistance-conferring mutations of HIV Reverse Transcriptase (e.g. K102Y, T216M) and HIV Protease (e.g. Q18N, N88G) from our dataset. Finally, we applied our models prospectively to the public HIV resistance database from Stanford University obtaining a correct resistance prediction rate of 84% on the full set (compared to 80% in previous work on a high quality subset). We conclude that proteochemometric models are able to accurately predict the phenotypic resistance based on genotypic data even for novel mutants and mixtures. Furthermore, we add an applicability domain to the prediction, informing the user about the reliability of predictions.

摘要

目前还无法治愈艾滋病毒感染,但可以通过多种抗逆转录病毒药物的联合治疗来控制。由于每个患者的病毒基因型几乎都不同,现在出现的问题是,应该使用哪种药物组合来实现有效的治疗。随着病毒基因型数据和临床表型数据的出现,现在已经有可能创建能够为个体患者预测最佳治疗方案的计算模型。目前的模型仅基于从病毒基因分型中获得的序列数据;药物的化学相似性则没有考虑在内。为了探索纳入化学相似性的附加值,我们应用了基于药效的化学计量模型,将化学和蛋白质靶标性质结合到一个单一的生物活性模型中。我们的数据集是一个大规模的临床基因型和表型信息数据库(总共约 300,000 个药物-突变体生物活性数据点,4 种(NNRTI)、8 种(NRTI)或 9 种(PI)药物,以及 10,700 种(NNRTI)、10,500 种(NRTI)或 27,000 种(PI)突变体)。我们的模型预测误差低于 0.5 Log Fold Change。此外,当与之前发表的序列数据直接比较时,基于药效的模型 PCM 在耐药性分类和 Log Fold Change 的预测方面表现更好(0.76 个对数单位对 0.91)。此外,我们还能够成功地从我们的数据集中确认已知和识别以前未发表的 HIV 逆转录酶(例如 K102Y、T216M)和 HIV 蛋白酶(例如 Q18N、N88G)的耐药突变。最后,我们将我们的模型前瞻性地应用于斯坦福大学的公共 HIV 耐药性数据库,在完整数据集上获得了 84%的正确耐药性预测率(与之前在高质量子集上的 80%相比)。我们的结论是,基于药效的模型能够准确地根据基因型数据预测表型耐药性,即使对于新的突变体和混合物也是如此。此外,我们为预测添加了一个适用域,告知用户预测的可靠性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验