Kind Stefanie, Neubauer Steffi, Becker Judith, Yamamoto Motonori, Völkert Martin, Abendroth Gregory von, Zelder Oskar, Wittmann Christoph
(a)Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.
(a)Institute of Biochemical Engineering, Technische Universität Braunschweig, Braunschweig, Germany; (b)Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
Metab Eng. 2014 Sep;25:113-23. doi: 10.1016/j.ymben.2014.05.007. Epub 2014 May 14.
Polyamides are important industrial polymers. Currently, they are produced exclusively from petrochemical monomers. Herein, we report the production of a novel bio-nylon, PA5.10 through an integration of biological and chemical approaches. First, systems metabolic engineering of Corynebacterium glutamicum was used to create an effective microbial cell factory for the production of diaminopentane as the polymer building block. In this way, a hyper-producer, with a high diaminopentane yield of 41% in shake flask culture, was generated. Subsequent fed-batch production of C. glutamicum DAP-16 allowed a molar yield of 50%, a productivity of 2.2gL(-1)h(-1), and a final titer of 88gL(-1). The streamlined producer accumulated diaminopentane without generating any by-products. Solvent extraction from alkalized broth and two-step distillation provided highly pure diaminopentane (99.8%), which was then directly accessible for poly-condensation. Chemical polymerization with sebacic acid, a ten-carbon dicarboxylic acid derived from castor plant oil, yielded the bio-nylon, PA5.10. In pure form and reinforced with glass fibers, the novel 100% bio-polyamide achieved an excellent melting temperature and the mechanical strength of the well-established petrochemical polymers, PA6 and PA6.6. It even outperformed the oil-based products in terms of having a 6% lower density. It thus holds high promise for applications in energy-friendly transportation. The demonstration of a novel route for generation of bio-based nylon from renewable sources opens the way to production of sustainable bio-polymers with enhanced material properties and represents a milestone in industrial production.
聚酰胺是重要的工业聚合物。目前,它们完全由石化单体生产。在此,我们报告了通过生物和化学方法相结合生产新型生物尼龙PA5.10的过程。首先,利用谷氨酸棒杆菌的系统代谢工程创建了一个有效的微生物细胞工厂,用于生产作为聚合物构建块的二氨基戊烷。通过这种方式,产生了一种高产菌株,在摇瓶培养中二氨基戊烷产量高达41%。随后对谷氨酸棒杆菌DAP-16进行补料分批培养,摩尔产率达到50%,生产率为2.2gL(-1)h(-1),最终滴度为88gL(-1)。这种简化的生产菌株积累二氨基戊烷时不产生任何副产物。从碱化肉汤中进行溶剂萃取和两步蒸馏可得到高纯度的二氨基戊烷(99.8%),然后可直接用于缩聚反应。与源自蓖麻油的十碳二羧酸癸二酸进行化学聚合,得到生物尼龙PA5.10。这种新型的100%生物聚酰胺以纯形式并经玻璃纤维增强后,具有出色的熔融温度和与成熟的石化聚合物PA6和PA6.6相当的机械强度。在密度方面,它甚至比油基产品低6%,因此在能源友好型运输应用方面具有很大潜力。从可再生资源生成生物基尼龙的新路线的展示,为生产具有增强材料性能的可持续生物聚合物开辟了道路,代表了工业生产中的一个里程碑。