Suppr超能文献

基于成像的机械负荷影响下骨特性无创评估方法

Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading.

作者信息

Macintyre Norma J, Lorbergs Amanda L

机构信息

School of Rehabilitation Science, McMaster University, Hamilton, Ont.

出版信息

Physiother Can. 2012 Spring;64(2):202-15. doi: 10.3138/ptc.2011-08bh. Epub 2012 Apr 5.

Abstract

PURPOSE

To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral.

METHOD

Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described.

MAIN RESULTS

While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties-particularly in the peripheral skeleton.

CONCLUSIONS

Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties.

UNLABELLED

To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral. Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described. While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties—particularly in the peripheral skeleton. Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties.

摘要

目的

描述用于评估受运动、习惯性体力活动或疾病状态相关机械负荷影响的骨特性的最常见的基于体内成像的研究工具。骨是一种复杂的代谢活跃组织,它通过改变矿物质的数量和空间组织来适应机械负荷的变化。

方法

作者采用叙述性综述设计,概述骨生物学和生物力学,以强调在解释使用定量超声(QUS)、双能X线吸收法(DXA)、计算机断层扫描(CT)、磁共振成像(MRI)和有限元分析(FEA)获得的测量结果时,骨大小尺度、孔隙率和矿化程度的重要性。对于每种成像方式,描述了基本成像原理、与机械负荷变化相关的典型结果测量以及对物理治疗师的显著特征。

主要结果

虽然每种成像方式都有其优点和局限性,但目前基于CT的方法最适合确定机械负荷对骨特性的影响——尤其是在外周骨骼中。

结论

无论使用何种成像技术,物理治疗师都必须仔细考虑基于成像方法的假设、临床背景、机械负荷变化的性质以及骨特性变化的预期时间进程。

未标注

描述用于评估受运动、习惯性体力活动或疾病状态相关机械负荷影响的骨特性的最常见的基于体内成像的研究工具。骨是一种复杂的代谢活跃组织,它通过改变矿物质的数量和空间组织来适应机械负荷的变化。作者采用叙述性综述设计,概述骨生物学和生物力学,以强调在解释使用定量超声(QUS)、双能X线吸收法(DXA)、计算机断层扫描(CT)、磁共振成像(MRI)和有限元分析(FEA)获得的测量结果时,骨大小尺度、孔隙率和矿化程度的重要性。对于每种成像方式,描述了基本成像原理、与机械负荷变化相关的典型结果测量以及对物理治疗师的显著特征。虽然每种成像方式都有其优点和局限性,但目前基于CT的方法最适合确定机械负荷对骨特性的影响——尤其是在外周骨骼中。无论使用何种成像技术,物理治疗师都必须仔细考虑基于成像方法的假设、临床背景、机械负荷变化的性质以及骨特性变化的预期时间进程。

相似文献

1
Imaging-Based Methods for Non-invasive Assessment of Bone Properties Influenced by Mechanical Loading.
Physiother Can. 2012 Spring;64(2):202-15. doi: 10.3138/ptc.2011-08bh. Epub 2012 Apr 5.
2
MRI-based mechanical competence assessment of bone using micro finite element analysis (micro-FEA): Review.
Magn Reson Imaging. 2022 May;88:9-19. doi: 10.1016/j.mri.2022.01.009. Epub 2022 Jan 25.
4
Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.
Curr Osteoporos Rep. 2016 Dec;14(6):374-385. doi: 10.1007/s11914-016-0335-y.
10
How can we measure bone quality?
Baillieres Clin Rheumatol. 1997 Aug;11(3):495-515. doi: 10.1016/s0950-3579(97)80017-9.

引用本文的文献

1
Imaging Inflammation - From Whole Body Imaging to Cellular Resolution.
Front Immunol. 2021 Jun 24;12:692222. doi: 10.3389/fimmu.2021.692222. eCollection 2021.
2
vibro-acoustography characterization of osteoporosis in an experimental mice model.
Quant Imaging Med Surg. 2021 Feb;11(2):586-596. doi: 10.21037/qims-20-610.
4
Influence of bone lesion location on femoral bone strength assessed by MRI-based finite-element modeling.
Bone. 2019 May;122:209-217. doi: 10.1016/j.bone.2019.03.005. Epub 2019 Mar 7.
5
Assessment of aging characteristics of female condylar trabecular structure by cone-beam computed tomography.
Oral Radiol. 2019 Jan;35(1):16-22. doi: 10.1007/s11282-018-0322-3. Epub 2018 Mar 5.
7
Bone texture characterization for osteoporosis diagnosis using digital radiography.
Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug;2016:1034-1037. doi: 10.1109/EMBC.2016.7590879.

本文引用的文献

6
Variations in morphological and biomechanical indices at the distal radius in subjects with identical BMD.
J Biomech. 2011 Jan 11;44(2):257-66. doi: 10.1016/j.jbiomech.2010.10.010. Epub 2010 Nov 10.
8
High-resolution imaging techniques for the assessment of osteoporosis.
Radiol Clin North Am. 2010 May;48(3):601-21. doi: 10.1016/j.rcl.2010.02.015.
9
Physical therapy approaches to reduce fall and fracture risk among older adults.
Nat Rev Endocrinol. 2010 Jul;6(7):396-407. doi: 10.1038/nrendo.2010.70. Epub 2010 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验