Macintyre Norma J, Lorbergs Amanda L
School of Rehabilitation Science, McMaster University, Hamilton, Ont.
Physiother Can. 2012 Spring;64(2):202-15. doi: 10.3138/ptc.2011-08bh. Epub 2012 Apr 5.
To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral.
Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described.
While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties-particularly in the peripheral skeleton.
Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties.
To describe the most common in vivo imaging-based research tools used to assess bone properties that are influenced by mechanical loading associated with exercise, habitual physical activity, or disease states. Bone is a complex metabolically active tissue that adapts to changes in mechanical loading by altering the amount and spatial organization of mineral. Using a narrative review design, the authors provide an overview of bone biology and biomechanics to emphasize the importance of bone size scale, porosity, and degree of mineralization when interpreting measures acquired using quantitative ultrasound (QUS), dual-energy X-ray absorptiometry (DXA), computed tomography (CT), magnetic resonance imaging (MRI), and finite element analysis (FEA). For each imaging modality, basic imaging principles, typical outcome measures associated with changes in mechanical loading, and salient features for physiotherapists are described. While each imaging modality has strengths and limitations, currently CT-based methods are best suited for determining the effects of mechanical loading on bone properties—particularly in the peripheral skeleton. Regardless of the imaging technology used, the physiotherapist must carefully consider the assumptions of the imaging-based method, the clinical context, the nature of the change in mechanical loading, and the expected time course for change in bone properties.
描述用于评估受运动、习惯性体力活动或疾病状态相关机械负荷影响的骨特性的最常见的基于体内成像的研究工具。骨是一种复杂的代谢活跃组织,它通过改变矿物质的数量和空间组织来适应机械负荷的变化。
作者采用叙述性综述设计,概述骨生物学和生物力学,以强调在解释使用定量超声(QUS)、双能X线吸收法(DXA)、计算机断层扫描(CT)、磁共振成像(MRI)和有限元分析(FEA)获得的测量结果时,骨大小尺度、孔隙率和矿化程度的重要性。对于每种成像方式,描述了基本成像原理、与机械负荷变化相关的典型结果测量以及对物理治疗师的显著特征。
虽然每种成像方式都有其优点和局限性,但目前基于CT的方法最适合确定机械负荷对骨特性的影响——尤其是在外周骨骼中。
无论使用何种成像技术,物理治疗师都必须仔细考虑基于成像方法的假设、临床背景、机械负荷变化的性质以及骨特性变化的预期时间进程。
描述用于评估受运动、习惯性体力活动或疾病状态相关机械负荷影响的骨特性的最常见的基于体内成像的研究工具。骨是一种复杂的代谢活跃组织,它通过改变矿物质的数量和空间组织来适应机械负荷的变化。作者采用叙述性综述设计,概述骨生物学和生物力学,以强调在解释使用定量超声(QUS)、双能X线吸收法(DXA)、计算机断层扫描(CT)、磁共振成像(MRI)和有限元分析(FEA)获得的测量结果时,骨大小尺度、孔隙率和矿化程度的重要性。对于每种成像方式,描述了基本成像原理、与机械负荷变化相关的典型结果测量以及对物理治疗师的显著特征。虽然每种成像方式都有其优点和局限性,但目前基于CT的方法最适合确定机械负荷对骨特性的影响——尤其是在外周骨骼中。无论使用何种成像技术,物理治疗师都必须仔细考虑基于成像方法的假设、临床背景、机械负荷变化的性质以及骨特性变化的预期时间进程。