Department of Chemistry, Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Arontier co., Seoul, Republic of Korea.
Nat Commun. 2022 Mar 4;13(1):1186. doi: 10.1038/s41467-022-28857-w.
Designing efficient synthetic routes for a target molecule remains a major challenge in organic synthesis. Atom environments are ideal, stand-alone, chemically meaningful building blocks providing a high-resolution molecular representation. Our approach mimics chemical reasoning, and predicts reactant candidates by learning the changes of atom environments associated with the chemical reaction. Through careful inspection of reactant candidates, we demonstrate atom environments as promising descriptors for studying reaction route prediction and discovery. Here, we present a new single-step retrosynthesis prediction method, viz. RetroTRAE, being free from all SMILES-based translation issues, yields a top-1 accuracy of 58.3% on the USPTO test dataset, and top-1 accuracy reaches to 61.6% with the inclusion of highly similar analogs, outperforming other state-of-the-art neural machine translation-based methods. Our methodology introduces a novel scheme for fragmental and topological descriptors to be used as natural inputs for retrosynthetic prediction tasks.
设计目标分子的高效合成路线仍然是有机合成中的一个主要挑战。原子环境是理想的、独立的、具有化学意义的构建块,提供了高分辨率的分子表示。我们的方法模拟了化学推理,并通过学习与化学反应相关的原子环境变化来预测反应物候选物。通过仔细检查反应物候选物,我们证明了原子环境作为研究反应路线预测和发现的有前途的描述符。在这里,我们提出了一种新的单步回溯合成预测方法,即 RetroTRAE,它不受所有基于 SMILES 的翻译问题的影响,在 USPTO 测试数据集上的 top-1 准确率为 58.3%,并且包含高度相似的类似物时,top-1 准确率达到 61.6%,优于其他最先进的基于神经机器翻译的方法。我们的方法为片段和拓扑描述符引入了一种新的方案,作为回溯预测任务的自然输入。