Suppr超能文献

深入了解铜绿假单胞菌中藻酸盐生物合成机制的组装。

Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa.

机构信息

Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.

出版信息

Appl Environ Microbiol. 2013 May;79(10):3264-72. doi: 10.1128/AEM.00460-13. Epub 2013 Mar 15.

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen of particular significance to cystic fibrosis patients. This bacterium produces the exopolysaccharide alginate, which is an indicator of poor prognosis for these patients. The proteins required for alginate polymerization and secretion are encoded by genes organized in a single operon; however, the existence of internal promoters has been reported. It has been proposed that these proteins form a multiprotein complex which extends from the inner to outer membrane. Here, experimental evidence supporting such a multiprotein complex was obtained via mutual stability analysis, pulldown assays, and coimmunoprecipitation. The impact of the absence of single proteins or subunits on this multiprotein complex, i.e., on the stability of potentially interacting proteins, as well as on alginate production was investigated. Deletion of algK in an alginate-overproducing strain, PDO300, interfered with the polymerization of alginate, suggesting that in the absence of AlgK, the polymerase and copolymerase subunits, Alg8 and Alg44, are destabilized. Based on mutual stability analysis, interactions between AlgE (outer membrane), AlgK (periplasm), AlgX (periplasm), Alg44 (inner membrane), Alg8 (inner membrane), and AlgG (periplasm) were proposed. Coimmunoprecipitation using a FLAG-tagged variant of AlgE further demonstrated its interaction with AlgK. Pulldown assays using histidine-tagged AlgK showed that AlgK interacts with AlgX, which in turn was also copurified with histidine-tagged Alg44. Detection of AlgG and AlgE in PAO1 supported the existence of internal promoters controlling expression of the respective genes. Overall experimental evidence was provided for the existence of a multiprotein complex required for alginate polymerization and secretion.

摘要

铜绿假单胞菌是囊性纤维化患者的一种机会性病原体。这种细菌产生的胞外多糖藻酸盐是这些患者预后不良的一个指标。藻酸盐聚合和分泌所需的蛋白质由单个操纵子编码的基因编码;然而,已经报道了内部启动子的存在。有人提出,这些蛋白质形成一个从内膜延伸到外膜的多蛋白复合物。在这里,通过相互稳定性分析、下拉测定和共免疫沉淀获得了支持这种多蛋白复合物的实验证据。研究了单个蛋白质或亚基缺失对这种多蛋白复合物(即潜在相互作用蛋白质的稳定性)以及藻酸盐产生的影响。在产藻酸盐过量的菌株 PDO300 中缺失 algK 会干扰藻酸盐的聚合,这表明在没有 AlgK 的情况下,聚合酶和共聚合酶亚基 Alg8 和 Alg44 不稳定。基于相互稳定性分析,提出了 AlgE(外膜)、AlgK(周质)、AlgX(周质)、Alg44(内膜)、Alg8(内膜)和 AlgG(周质)之间的相互作用。使用 FLAG 标记的 AlgE 变体进行共免疫沉淀进一步证明了它与 AlgK 的相互作用。使用组氨酸标记的 AlgK 进行下拉测定表明,AlgK 与 AlgX 相互作用,而 AlgX 反过来也与组氨酸标记的 Alg44 共纯化。在 PAO1 中检测到 AlgG 和 AlgE 支持控制各自基因表达的内部启动子的存在。总体实验证据证明了藻酸盐聚合和分泌所需的多蛋白复合物的存在。

相似文献

1
Insights into the assembly of the alginate biosynthesis machinery in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2013 May;79(10):3264-72. doi: 10.1128/AEM.00460-13. Epub 2013 Mar 15.
2
Alginate Polymerization and Modification Are Linked in Pseudomonas aeruginosa.
mBio. 2015 May 12;6(3):e00453-15. doi: 10.1128/mBio.00453-15.
3
Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization.
Microbiology (Reading). 2008 Jun;154(Pt 6):1605-1615. doi: 10.1099/mic.0.2007/015305-0.
4
Analysis of the alginate O-acetylation machinery in Pseudomonas aeruginosa.
Appl Microbiol Biotechnol. 2020 Mar;104(5):2179-2191. doi: 10.1007/s00253-019-10310-6. Epub 2020 Jan 4.
5
Dual roles of Pseudomonas aeruginosa AlgE in secretion of the virulence factor alginate and formation of the secretion complex.
Appl Environ Microbiol. 2013 Mar;79(6):2002-11. doi: 10.1128/AEM.03960-12. Epub 2013 Jan 18.
7
Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2017 Apr 17;83(9). doi: 10.1128/AEM.03499-16. Print 2017 May 1.
8
Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate.
Appl Microbiol Biotechnol. 2012 Jan;93(1):215-27. doi: 10.1007/s00253-011-3430-0. Epub 2011 Jun 29.
9
Role of an alginate lyase for alginate transport in mucoid Pseudomonas aeruginosa.
Infect Immun. 2005 Oct;73(10):6429-36. doi: 10.1128/IAI.73.10.6429-6436.2005.
10
The dual roles of AlgG in C-5-epimerization and secretion of alginate polymers in Pseudomonas aeruginosa.
Mol Microbiol. 2003 Feb;47(4):1123-33. doi: 10.1046/j.1365-2958.2003.03361.x.

引用本文的文献

1
Advances in alginate biosynthesis: regulation and production in .
Front Bioeng Biotechnol. 2025 Jul 31;13:1593893. doi: 10.3389/fbioe.2025.1593893. eCollection 2025.
2
Pseudomonas aeruginosa biofilm exopolysaccharides: assembly, function, and degradation.
FEMS Microbiol Rev. 2023 Nov 1;47(6). doi: 10.1093/femsre/fuad060.
4
Regulation of Biofilm Exopolysaccharide Production by Cyclic Di-Guanosine Monophosphate.
Front Microbiol. 2021 Sep 10;12:730980. doi: 10.3389/fmicb.2021.730980. eCollection 2021.
9
Bacterial biopolymers: from pathogenesis to advanced materials.
Nat Rev Microbiol. 2020 Apr;18(4):195-210. doi: 10.1038/s41579-019-0313-3. Epub 2020 Jan 28.
10
Architecture of the Cellulose Synthase Outer Membrane Channel and Its Association with the Periplasmic TPR Domain.
Structure. 2019 Dec 3;27(12):1855-1861.e3. doi: 10.1016/j.str.2019.09.008. Epub 2019 Oct 8.

本文引用的文献

1
Dual roles of Pseudomonas aeruginosa AlgE in secretion of the virulence factor alginate and formation of the secretion complex.
Appl Environ Microbiol. 2013 Mar;79(6):2002-11. doi: 10.1128/AEM.03960-12. Epub 2013 Jan 18.
2
Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria.
Trends Microbiol. 2013 Feb;21(2):63-72. doi: 10.1016/j.tim.2012.10.001. Epub 2012 Oct 29.
3
Evidence for two promoters internal to the alginate biosynthesis operon in Pseudomonas aeruginosa.
Curr Microbiol. 2012 Dec;65(6):770-5. doi: 10.1007/s00284-012-0228-y. Epub 2012 Sep 18.
4
Biosynthesis of the Pseudomonas aeruginosa Extracellular Polysaccharides, Alginate, Pel, and Psl.
Front Microbiol. 2011 Aug 22;2:167. doi: 10.3389/fmicb.2011.00167. eCollection 2011.
5
Structural basis for alginate secretion across the bacterial outer membrane.
Proc Natl Acad Sci U S A. 2011 Aug 9;108(32):13083-8. doi: 10.1073/pnas.1104984108. Epub 2011 Jul 21.
6
Identification of a periplasmic AlgK-AlgX-MucD multiprotein complex in Pseudomonas aeruginosa involved in biosynthesis and regulation of alginate.
Appl Microbiol Biotechnol. 2012 Jan;93(1):215-27. doi: 10.1007/s00253-011-3430-0. Epub 2011 Jun 29.
7
Bacterial polymers: biosynthesis, modifications and applications.
Nat Rev Microbiol. 2010 Aug;8(8):578-92. doi: 10.1038/nrmicro2354. Epub 2010 Jun 28.
8
AlgK is a TPR-containing protein and the periplasmic component of a novel exopolysaccharide secretin.
Structure. 2010 Feb 10;18(2):265-73. doi: 10.1016/j.str.2009.11.015.
9
Membrane topology of outer membrane protein AlgE, which is required for alginate production in Pseudomonas aeruginosa.
Appl Environ Microbiol. 2010 Mar;76(6):1806-12. doi: 10.1128/AEM.02945-09. Epub 2010 Jan 22.
10
Analysis of HmsH and its role in plague biofilm formation.
Microbiology (Reading). 2010 May;156(Pt 5):1424-1438. doi: 10.1099/mic.0.036640-0. Epub 2010 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验