DSM Biotechnology Center, Delft, The Netherlands.
Netherlands Metabolomics Centre (NMC), Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands.
J Lipid Res. 2013 Jun;54(6):1598-1607. doi: 10.1194/jlr.M034918. Epub 2013 Mar 29.
The dose-responsiveness of plasma oxylipins to incremental dietary intake of arachidonic acid (20:4n-6; ARA) and docosahexaenoic acid (22:6n-3; DHA) was determined in piglets. Piglets randomly received one of six formulas (n = 8 per group) from days 3 to 27 postnatally. Diets contained incremental ARA or incremental DHA levels as follows (% fatty acid, ARA/DHA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3-D3) 0.69/1.0; (A4) 1.1/1.0; (D1) 0.66/0.33; and (D2) 0.67/0.62, resulting in incremental intake (g/kg BW/day) of ARA: 0.07 ± 0.01, 0.43 ± 0.03, 0.55 ± 0.03, and 0.82 ± 0.05 at constant DHA intake (0.82 ± 0.05), or incremental intake of DHA: 0.27 ± 0.02, 0.49 ± 0.03, and 0.81 ± 0.05 at constant ARA intake (0.54 ± 0.04). Plasma oxylipin concentrations and free plasma PUFA levels were determined at day 28 using LC-MS/MS. Incremental dietary ARA intake dose-dependently increased plasma ARA levels. In parallel, ARA intake dose-dependently increased ARA-derived diols 5,6- and 14,15-dihydroxyeicosatrienoic acid (DiHETrE) and linoleic acid-derived 12,13-dihydroxyoctadecenoic acid (DiHOME), downstream metabolites of cytochrome P450 expoxygenase (CYP). The ARA epoxide products from CYP are important in vascular homeostatic maintenance. Incremental DHA intake increased plasma DHA and most markedly raised the eicosapentaenoic acid (EPA) metabolite 17,18-dihydroxyeicosatetraenoic acid (DiHETE) and the DHA metabolite 19,20-dihydroxydocosapentaenoic acid (DiHDPE). In conclusion, increasing ARA and DHA intake dose-dependently influenced endogenous n-6 and n-3 oxylipin plasma concentrations in growing piglets, although the biological relevance of these findings remains to be determined.
在仔猪中确定了血浆氧化应激产物对膳食中花生四烯酸(20:4n-6;ARA)和二十二碳六烯酸(22:6n-3;DHA)递增摄入的剂量反应性。仔猪在产后第 3 至 27 天随机接受了六种配方之一(每组 8 头)。饮食中含有递增的 ARA 或 DHA 水平,如下所示(%脂肪酸,ARA/DHA):(A1)0.1/1.0;(A2)0.53/1.0;(A3-D3)0.69/1.0;(A4)1.1/1.0;(D1)0.66/0.33;和(D2)0.67/0.62,导致 ARA 的递增摄入量(g/kg BW/天):0.07 ± 0.01、0.43 ± 0.03、0.55 ± 0.03 和 0.82 ± 0.05,同时保持 DHA 摄入量(0.82 ± 0.05)不变,或 DHA 的递增摄入量:0.27 ± 0.02、0.49 ± 0.03 和 0.81 ± 0.05,同时保持 ARA 摄入量(0.54 ± 0.04)不变。使用 LC-MS/MS 在第 28 天测定血浆氧化应激产物浓度和游离血浆多不饱和脂肪酸水平。递增的膳食 ARA 摄入剂量依赖性地增加了血浆 ARA 水平。与此同时,ARA 摄入剂量依赖性地增加了 ARA 衍生的二醇 5,6-和 14,15-二羟基二十碳三烯酸(DiHETrE)和亚油酸衍生的 12,13-二羟基十八碳烯酸(DiHOME),细胞色素 P450 加氧酶(CYP)的下游代谢物。CYP 产生的 ARA 环氧化物是血管内稳态维持的重要物质。递增的 DHA 摄入增加了血浆 DHA,最显着地提高了二十碳五烯酸(EPA)代谢物 17,18-二羟基二十碳四烯酸(DiHETE)和二十二碳六烯酸代谢物 19,20-二羟基二十二碳五烯酸(DiHDPE)。总之,增加 ARA 和 DHA 的摄入剂量依赖性地影响了生长仔猪内源性 n-6 和 n-3 氧化应激产物的血浆浓度,尽管这些发现的生物学意义仍有待确定。