Wadsworth Center, New York State Department of Health, University at Albany, School of Public Health, Albany, NY 12201-0509, USA.
Nucleic Acids Res. 2013 May;41(9):5024-35. doi: 10.1093/nar/gkt179. Epub 2013 Apr 4.
Polymerases belonging to the DinB class of the Y-family translesion synthesis DNA polymerases have a preference for accurately and efficiently bypassing damaged guanosines. These DinB polymerases also generate single-base (-1) deletions at high frequencies with most occurring on repetitive 'deletion hotspot' sequences. Human DNA polymerase kappa (hPolκ), the eukaryotic DinB homologue, displays an unusual efficiency for to extend from mispaired primer termini, either by extending directly from the mispair or by primer-template misalignment. This latter property explains how hPolκ creates single-base deletions in non-repetitive sequences, but does not address how deletions occur in repetitive deletion hotspots. Here, we show that hPolκ uses a classical Streisinger template-slippage mechanism to generate -1 deletions in repetitive sequences, as do the bacterial and archaeal homologues. After the first nucleotide is added by template slippage, however, hPolκ can efficiently realign the primer-template duplex before continuing DNA synthesis. Strand realignment results in a base-substitution mutation, minimizing generation of more deleterious frameshift mutations. On non-repetitive sequences, we find that nucleotide misincorporation is slower if the incoming nucleotide can correctly basepair with the nucleotide immediately 5' to the templating base, thereby competing against the mispairing with the templating base.
聚酶属于 Y 家族跨损伤合成 DNA 聚合酶的 DinB 类,对准确有效地绕过受损的鸟嘌呤具有偏好。这些 DinB 聚合酶还以高频率产生单碱基 (-1) 缺失,大多数发生在重复的“缺失热点”序列上。人类 DNA 聚合酶 kappa (hPolκ),真核 DinB 同源物,在从错配的引物末端延伸方面表现出异常的效率,要么直接从错配延伸,要么通过引物-模板错配延伸。后一种特性解释了 hPolκ 如何在非重复序列中产生单碱基缺失,但并未解决缺失如何发生在重复的缺失热点中。在这里,我们表明 hPolκ 使用经典的 Streisinger 模板滑动机制在重复序列中产生 -1 缺失,细菌和古细菌同源物也是如此。然而,在模板滑动添加第一个核苷酸后,hPolκ 可以在继续 DNA 合成之前有效地重新对齐引物-模板双链体。链重新对齐导致碱基取代突变,最大限度地减少产生更具危害性的移码突变。在非重复序列上,如果进入的核苷酸可以与模板碱基 5' 紧邻的核苷酸正确碱基配对,从而与模板碱基的错配竞争,那么核苷酸错误掺入会更慢。