Suppr超能文献

开发钯(II)催化的 C-H 功能化反应的配体:配体与底物的密切对话。

Developing ligands for palladium(II)-catalyzed C-H functionalization: intimate dialogue between ligand and substrate.

机构信息

Department of Chemistry, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States.

出版信息

J Org Chem. 2013 Sep 20;78(18):8927-55. doi: 10.1021/jo400159y. Epub 2013 May 3.

Abstract

Homogeneous transition-metal-catalyzed reactions are indispensable to all facets of modern chemical synthesis. It is thus difficult to imagine that for much of the early 20th century, the reactivity and selectivity of all known homogeneous metal catalysts paled in comparison to their heterogeneous and biological counterparts. In the intervening decades, advances in ligand design bridged this divide, such that today some of the most demanding bond-forming events are mediated by ligand-supported homogeneous metal species. While ligand design has propelled many areas of homogeneous catalysis, in the field of Pd(II)-catalyzed C-H functionalization, suitable ligand scaffolds are lacking, which has hampered the development of broadly practical transformations based on C-H functionalization logic. In this Perspective, we offer an account of our research employing three ligand scaffolds, mono-N-protected amino acids, 2,6-disubstituted pyridines, and 2,2'-bipyridines, to address challenges posed by several synthetically versatile substrate classes. Drawing on this work, we discuss principles of ligand design, such as the need to match a ligand to a particular substrate class, and how ligand traits such as tunability and modularity can be advantageous in reaction discovery.

摘要

均相过渡金属催化反应是现代化学合成各个方面不可或缺的。因此,很难想象在 20 世纪的大部分时间里,所有已知的均相金属催化剂的反应性和选择性都远远落后于它们的多相和生物催化剂。在这几十年中,配体设计的进步弥合了这一差距,以至于今天一些最具挑战性的成键事件都是由配体支持的均相金属物种介导的。虽然配体设计推动了许多均相催化领域的发展,但在 Pd(II)催化的 C-H 官能化领域,合适的配体支架仍然缺乏,这阻碍了基于 C-H 官能化逻辑的广泛实用转化的发展。在这篇观点文章中,我们介绍了我们使用三种配体支架(单 N-保护氨基酸、2,6-取代吡啶和 2,2'-联吡啶)的研究,以解决几个具有合成多功能性的底物类别的挑战。借鉴这项工作,我们讨论了配体设计的原则,例如需要将配体与特定的底物类匹配,以及配体的可调节性和模块化等特性在反应发现中如何具有优势。

相似文献

1
Developing ligands for palladium(II)-catalyzed C-H functionalization: intimate dialogue between ligand and substrate.
J Org Chem. 2013 Sep 20;78(18):8927-55. doi: 10.1021/jo400159y. Epub 2013 May 3.
2
Experimental-Computational Synergy for Selective Pd(II)-Catalyzed C-H Activation of Aryl and Alkyl Groups.
Acc Chem Res. 2017 Nov 21;50(11):2853-2860. doi: 10.1021/acs.accounts.7b00440. Epub 2017 Nov 8.
4
Electronic and Steric Tuning of a Prototypical Piano Stool Complex: Rh(III) Catalysis for C-H Functionalization.
Acc Chem Res. 2018 Jan 16;51(1):170-180. doi: 10.1021/acs.accounts.7b00444. Epub 2017 Dec 22.
5
Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions.
Acc Chem Res. 2012 Jun 19;45(6):788-802. doi: 10.1021/ar200185g. Epub 2011 Dec 14.
7
Catalytic Behavior of Mono-N-Protected Amino-Acid Ligands in Ligand-Accelerated C-H Activation by Palladium(II).
Angew Chem Int Ed Engl. 2020 Jun 26;59(27):10873-10877. doi: 10.1002/anie.202002484. Epub 2020 Apr 8.
8
Recent advances in sustainable N-heterocyclic carbene-Pd(II)-pyridine (PEPPSI) catalysts: A review.
Environ Res. 2023 May 15;225:115515. doi: 10.1016/j.envres.2023.115515. Epub 2023 Feb 24.
9
Bimetallic redox synergy in oxidative palladium catalysis.
Acc Chem Res. 2012 Jun 19;45(6):840-50. doi: 10.1021/ar2001974. Epub 2011 Oct 27.
10
Ligand-Enabled Alkynylation of C(sp )-H Bonds with Palladium(II) Catalysts.
Angew Chem Int Ed Engl. 2017 Feb 6;56(7):1873-1876. doi: 10.1002/anie.201610426. Epub 2017 Jan 12.

引用本文的文献

1
Mathematical Framework to Identify Optimal Molecule Based on Virtual Ligand Strategy.
J Chem Inf Model. 2025 Jul 14;65(13):6913-6926. doi: 10.1021/acs.jcim.5c00815. Epub 2025 Jun 13.
3
Acridine photocatalysis enables tricomponent direct decarboxylative amine construction.
Chem Sci. 2024 May 22;15(25):9582-9590. doi: 10.1039/d4sc02356k. eCollection 2024 Jun 26.
4
Dual-Ligand Catalyst for the Nondirected C-H Olefination of Heteroarenes.
J Am Chem Soc. 2023 Apr 12;145(14):8198-8208. doi: 10.1021/jacs.3c01631. Epub 2023 Mar 28.
5
β- and γ-C(sp )-H Heteroarylation of Free Carboxylic Acids: A Modular Synthetic Platform for Diverse Quaternary Carbon Centers.
Angew Chem Int Ed Engl. 2023 Feb 20;62(9):e202214459. doi: 10.1002/anie.202214459. Epub 2023 Jan 24.
6
Transient directing group enabled Pd-catalyzed C-H oxygenation of benzaldehydes and benzylic amines.
RSC Adv. 2022 Jun 27;12(29):18722-18727. doi: 10.1039/d2ra00241h. eCollection 2022 Jun 22.
7
Synthesis of new Pro-PYE ligands as co-catalysts toward Pd-catalyzed Heck-Mizoroki cross coupling reactions.
RSC Adv. 2019 Nov 21;9(65):37986-38000. doi: 10.1039/c9ra07912b. eCollection 2019 Nov 19.
9
Site-Selective Pd-Catalyzed C(sp )-H Arylation of Heteroaromatic Ketones.
Chemistry. 2021 Dec 15;27(70):17688-17694. doi: 10.1002/chem.202103467. Epub 2021 Nov 11.

本文引用的文献

1
A Convenient and General Method for Pd-Catalyzed Suzuki Cross-Couplings of Aryl Chlorides and Arylboronic Acids.
Angew Chem Int Ed Engl. 1998 Dec 31;37(24):3387-3388. doi: 10.1002/(SICI)1521-3773(19981231)37:24<3387::AID-ANIE3387>3.0.CO;2-P.
2
Aromatic substitution of olefins. VI. Arylation of olefins with palladium(II) acetate.
J Am Chem Soc. 1969 Dec 1;91(25):7166-9. doi: 10.1021/ja01053a047.
3
Heterocycle Formation Palladium-Catalyzed C-H Functionalization.
Synthesis (Stuttg). 2012 Jun;44(12):1778-1791. doi: 10.1055/s-0031-1289766. Epub 2012 May 25.
6
Pd-catalyzed C3-selective arylation of pyridines with phenyl tosylates.
Chem Commun (Camb). 2013 May 21;49(41):4634-6. doi: 10.1039/c3cc41066h. Epub 2013 Apr 11.
8
Aerobic oxidative Heck/dehydrogenation reactions of cyclohexenones: efficient access to meta-substituted phenols.
Angew Chem Int Ed Engl. 2013 Mar 25;52(13):3672-5. doi: 10.1002/anie.201209457. Epub 2013 Feb 19.
9
Synthesis of 3-acylindoles by palladium-catalyzed acylation of free (N-H) indoles with nitriles.
Org Lett. 2013 Feb 15;15(4):788-91. doi: 10.1021/ol303440y. Epub 2013 Jan 25.
10
Pd(II)-catalyzed enantioselective C-H activation/C-O bond formation: synthesis of chiral benzofuranones.
J Am Chem Soc. 2013 Jan 30;135(4):1236-9. doi: 10.1021/ja311259x. Epub 2013 Jan 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验