Suppr超能文献

烟草花叶病毒棒状体和球体作为超分子高弛豫率磁共振成像造影剂。

Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents.

作者信息

Bruckman Michael A, Hern Stephen, Jiang Kai, Flask Chris A, Yu Xin, Steinmetz Nicole F

机构信息

Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.

出版信息

J Mater Chem B. 2013 Mar 14;1(10):1482-1490. doi: 10.1039/C3TB00461A.

Abstract

To compensate for the low sensitivity of magnetic resonance imaging (MRI), nanoparticles have been developed to deliver high payloads of contrast agents to sites of disease. Here, we report the development of supramolecular MRI contrast agents using the plant viral nanoparticle tobacco mosaic virus (TMV). Rod-shaped TMV nanoparticles measuring 300×18 nm were loaded with up to 3,500 or 2,000 chelated paramagnetic gadolinium (III) ions selectively at the interior (iGd-TMV) or exterior (eGd-TMV) surface, respectively. Spatial control is achieved through targeting either tyrosine or carboxylic acid side chains on the solvent exposed exterior or interior TMV surface. The ionic T relaxivity per Gd ion (at 60 MHz) increases from 4.9 mMs for free Gd(DOTA) to 18.4 mMs for eGd-TMV and 10.7 mMs for iGd-TMV. This equates to T values of ~ 30,000 mMs and ~ 35,000 mMs per eGd-TMV and iGd-TMV nanoparticle. Further, we show that interior-labeled TMV rods can undergo thermal transition to form 170 nm-sized spherical nanoparticles containing ~ 25,000 Gd chelates and a per particle relaxivity of almost 400,000 mMs (15.2 mMs per Gd). This work lays the foundation for the use of TMV as a contrast agent for MRI.

摘要

为了弥补磁共振成像(MRI)灵敏度较低的问题,人们已开发出纳米颗粒,用于将高负载量的造影剂输送到疾病部位。在此,我们报告了使用植物病毒纳米颗粒烟草花叶病毒(TMV)开发超分子MRI造影剂的情况。分别在内部(iGd-TMV)或外部(eGd-TMV)表面选择性地装载了多达3500个或2000个螯合顺磁性钆(III)离子的棒状TMV纳米颗粒,其尺寸为300×18纳米。通过靶向溶剂暴露的TMV外部或内部表面上的酪氨酸或羧酸侧链来实现空间控制。每个钆离子的离子弛豫率(在60兆赫兹时)从游离Gd(DOTA)的4.9毫摩尔每秒增加到eGd-TMV的18.4毫摩尔每秒和iGd-TMV的10.7毫摩尔每秒。这相当于每个eGd-TMV和iGd-TMV纳米颗粒的弛豫时间值约为30,000毫摩尔每秒和35,000毫摩尔每秒。此外,我们表明内部标记的TMV棒可以发生热转变,形成含有约25,000个钆螯合物且每个颗粒弛豫率几乎为400,000毫摩尔每秒(每个钆为15.2毫摩尔每秒)的170纳米大小的球形纳米颗粒。这项工作为将TMV用作MRI造影剂奠定了基础。

相似文献

1
Tobacco mosaic virus rods and spheres as supramolecular high-relaxivity MRI contrast agents.
J Mater Chem B. 2013 Mar 14;1(10):1482-1490. doi: 10.1039/C3TB00461A.
2
Silica-coated Gd(DOTA)-loaded protein nanoparticles enable magnetic resonance imaging of macrophages.
J Mater Chem B. 2015 Oct 1;3(38):7503-7510. doi: 10.1039/C5TB01014D. Epub 2015 Jul 22.
3
Nanomanufacturing of Tobacco Mosaic Virus-Based Spherical Biomaterials Using a Continuous Flow Method.
ACS Biomater Sci Eng. 2015 Jan 12;1(1):13-18. doi: 10.1021/ab500059s. Epub 2014 Dec 9.
5
Nitroxyl Modified Tobacco Mosaic Virus as a Metal-Free High-Relaxivity MRI and EPR Active Superoxide Sensor.
Mol Pharm. 2018 Aug 6;15(8):2973-2983. doi: 10.1021/acs.molpharmaceut.8b00262. Epub 2018 May 29.
6
Chemical modification of the inner and outer surfaces of Tobacco Mosaic Virus (TMV).
Methods Mol Biol. 2014;1108:173-85. doi: 10.1007/978-1-62703-751-8_13.
8
A small MRI contrast agent library of gadolinium(III)-encapsulated supramolecular nanoparticles for improved relaxivity and sensitivity.
Biomaterials. 2011 Mar;32(8):2160-5. doi: 10.1016/j.biomaterials.2010.11.043. Epub 2010 Dec 16.
9
New dual mode gadolinium nanoparticle contrast agent for magnetic resonance imaging.
PLoS One. 2009 Oct 29;4(10):e7628. doi: 10.1371/journal.pone.0007628.

引用本文的文献

1
Current status of Cancer Nanotheranostics: Emerging strategies for cancer management.
Nanotheranostics. 2023 May 1;7(4):368-379. doi: 10.7150/ntno.82263. eCollection 2023.
2
3
Structurally Modified Plant Viruses and Bacteriophages with Helical Structure. Properties and Applications.
Biochemistry (Mosc). 2022 Jun;87(6):548-558. doi: 10.1134/S0006297922060062.
4
Cyclodextrins: promising scaffolds for MRI contrast agents.
RSC Adv. 2021 Sep 17;11(47):29762-29785. doi: 10.1039/d1ra04084g. eCollection 2021 Sep 1.
5
Plant Virus Nanoparticles for Anti-cancer Therapy.
Front Bioeng Biotechnol. 2021 Dec 15;9:642794. doi: 10.3389/fbioe.2021.642794. eCollection 2021.
7
Application of Plant Viruses in Biotechnology, Medicine, and Human Health.
Viruses. 2021 Aug 26;13(9):1697. doi: 10.3390/v13091697.
8
Frontiers in Bioengineering and Biotechnology: Plant Nanoparticles for Anti-Cancer Therapy.
Vaccines (Basel). 2021 Jul 28;9(8):830. doi: 10.3390/vaccines9080830.
9
Thermal remodelling of Alternanthera mosaic virus virions and virus-like particles into protein spherical particles.
PLoS One. 2021 Jul 28;16(7):e0255378. doi: 10.1371/journal.pone.0255378. eCollection 2021.
10
Recent progress in targeted delivery vectors based on biomimetic nanoparticles.
Signal Transduct Target Ther. 2021 Jun 7;6(1):225. doi: 10.1038/s41392-021-00631-2.

本文引用的文献

1
Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle Potato virus X.
Mol Pharm. 2013 Jan 7;10(1):33-42. doi: 10.1021/mp300240m. Epub 2012 Jul 9.
2
Silica microparticles as a solid support for gadolinium phosphonate magnetic resonance imaging contrast agents.
J Am Chem Soc. 2012 May 16;134(19):8046-9. doi: 10.1021/ja302183w. Epub 2012 May 3.
3
4
Mutant plant viruses with cell binding motifs provide differential adhesion strengths and morphologies.
Biomacromolecules. 2012 Feb 13;13(2):422-31. doi: 10.1021/bm2014558. Epub 2012 Jan 12.
5
Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration.
Angew Chem Int Ed Engl. 2011 Nov 25;50(48):11417-20. doi: 10.1002/anie.201104449. Epub 2011 Oct 6.
6
Synthesis and application of virus-based hybrid nanomaterials.
Biotechnol Bioeng. 2012 Jan;109(1):16-30. doi: 10.1002/bit.23328. Epub 2011 Sep 21.
7
Using synthetically modified proteins to make new materials.
Acc Chem Res. 2011 Sep 20;44(9):774-83. doi: 10.1021/ar2001292. Epub 2011 Aug 3.
8
Multivalent, high-relaxivity MRI contrast agents using rigid cysteine-reactive gadolinium complexes.
J Am Chem Soc. 2011 Sep 21;133(37):14704-9. doi: 10.1021/ja204516p. Epub 2011 Aug 26.
9
Functional virus-based polymer-protein nanoparticles by atom transfer radical polymerization.
J Am Chem Soc. 2011 Jun 22;133(24):9242-5. doi: 10.1021/ja203286n. Epub 2011 May 31.
10
Applications of viral nanoparticles in medicine.
Curr Opin Biotechnol. 2011 Dec;22(6):901-8. doi: 10.1016/j.copbio.2011.04.020. Epub 2011 May 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验