Suppr超能文献

在后代群体中进行性状分离的基因组预测:以日本梨(Pyrus pyrifolia)为例的研究。

Genomic prediction of trait segregation in a progeny population: a case study of Japanese pear (Pyrus pyrifolia).

机构信息

Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, 113-8657, Tokyo, Japan.

出版信息

BMC Genet. 2013 Sep 12;14:81. doi: 10.1186/1471-2156-14-81.

Abstract

BACKGROUND

In cross breeding, it is important to choose a good parental combination that has high probability of generating offspring with desired characteristics. This study examines a method for predicting the segregation of target traits in a progeny population based on genome-wide markers and phenotype data of parental cultivars.

RESULTS

The proposed method combines segregation simulation and Bayesian modeling for genomic selection. Marker segregation in a progeny population was simulated based on parental genotypes. Posterior marker effects sampled via Markov Chain Monte Carlo were used to predict the segregation pattern of target traits. The posterior distribution of the proportion of progenies that fulfill selection criteria was calculated and used for determining a promising cross and the necessary size of the progeny population. We applied the proposed method to Japanese pear (Pyrus pyrifolia Nakai) data to demonstrate the method and to show how it works in the selection of a promising cross. Verification using an actual breeding population suggests that the segregation of target traits can be predicted with reasonable accuracy, especially in a highly heritable trait. The uncertainty in predictions was reflected on the posterior distribution of the proportion of progenies that fulfill selection criteria. A simulation study based on the real marker data of Japanese pear cultivars also suggests the potential of the method.

CONCLUSIONS

The proposed method is useful to provide objective and quantitative criteria for choosing a parental combination and the breeding population size.

摘要

背景

在杂交育种中,选择具有高概率产生具有所需特征的后代的优良亲本组合非常重要。本研究基于亲本品种的全基因组标记和表型数据,检验了一种预测后代群体中目标性状分离的方法。

结果

该方法将分离模拟与基因组选择的贝叶斯建模相结合。基于亲本基因型模拟后代群体中的标记分离。通过马尔可夫链蒙特卡罗抽样的后标记效应用于预测目标性状的分离模式。计算满足选择标准的后代比例的后验分布,并用于确定有希望的杂交和必要的后代群体大小。我们应用该方法对日本梨(Pyrus pyrifolia Nakai)数据进行了演示,展示了该方法的工作原理以及如何在有希望的杂交选择中应用。使用实际育种群体进行的验证表明,目标性状的分离可以以合理的精度进行预测,尤其是在遗传力较高的性状中。预测的不确定性反映在后验分布上,该分布表示满足选择标准的后代比例。基于日本梨品种的真实标记数据的模拟研究也表明了该方法的潜力。

结论

该方法可提供客观和定量的标准,用于选择亲本组合和育种群体大小。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8305/3847345/f76321b11166/1471-2156-14-81-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验