Institute of Biology, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
Plant Sci. 2013 Jun;207:45-56. doi: 10.1016/j.plantsci.2013.02.004. Epub 2013 Feb 20.
The growth of hypocotyls and epicotyls has been attributed to the turgor-driven enlargement of cells, a process that is under the control of phytohormones such as auxin. However, the experiments presented here and elsewhere using developing sunflower (Helianthus annuus L.) seedlings raised either in darkness (skotomorphogenesis) or in white light (WL) (photomorphogenesis) indicate that auxin-mediated segment elongation ceases after 1 day, whereas hypocotyl growth continues in the intact system. Based on these results and data from the literature, we propose that hypocotyl growth consists of three inter-related processes: (1) cell division in the apical meristematic regions; (2) turgor-driven cell elongation along the stem; and (3) cell maturation in the basal region of the organ. We document that the closed apical hook (or the corresponding region after opening in WL) is the location where cell division occurs, and suggest that the epidermis and the outer cortex plays an important role in a "pacemaker system" for cell division. Results from the literature support the hypothesis that pectin metabolism in the expansion-limiting epidermal cell wall(s) is involved in wall-loosening and -stiffening. During hypocotyl growth in darkness and WL, turgor pressure is largely maintained, i.e., in H. annuus no hydrostatic pressure-regulated growth occurs. These data do not support the "loss of stability theory" of cell expansion. Finally, we document that turgor maintenance during organ elongation is caused by sucrose catabolism via vacuolar acid invertases, resulting in the generation of hexoses (osmoregulation). Based on these data, we present an integrative model of axial elongation in developing seedlings of dicotyledonous plants and discuss open questions.
下胚轴和上胚轴的生长归因于细胞的膨压驱动的扩大,这一过程受植物激素如生长素的控制。然而,这里和其他地方提出的使用在黑暗中(暗形态发生)或在白光下(光形态发生)发育的向日葵(Helianthus annuus L.)幼苗进行的实验表明,生长素介导的节段伸长在 1 天后停止,而在下胚轴完整的系统中继续生长。基于这些结果和文献中的数据,我们提出下胚轴的生长由三个相互关联的过程组成:(1)顶端分生组织区域的细胞分裂;(2)沿着茎的膨压驱动的细胞伸长;(3)器官基部的细胞成熟。我们记录到封闭的顶端弯钩(或在白光下打开后的相应区域)是细胞分裂发生的位置,并提出表皮和外皮层在细胞分裂的“起搏器系统”中发挥重要作用。文献中的结果支持这样的假设,即果胶代谢在限制细胞扩展的表皮细胞壁中参与细胞壁的疏松和硬化。在下胚轴在黑暗和白光下的生长过程中,膨压压力基本得到维持,即在向日葵中,没有静水压力调节的生长发生。这些数据不支持细胞扩展的“失稳理论”。最后,我们记录到,通过液泡酸性转化酶对蔗糖的分解,在器官伸长过程中维持膨压,从而产生己糖(渗透调节)。基于这些数据,我们提出了双子叶植物发育幼苗轴向伸长的综合模型,并讨论了未解决的问题。