McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, TX 78712, USA.
J Biotechnol. 2013 Jun 10;165(3-4):184-94. doi: 10.1016/j.jbiotec.2013.04.003. Epub 2013 Apr 16.
The complete biosynthetic replacement of petroleum transportation fuels requires a metabolic pathway capable of producing short chain n-alkanes. Here, we report and characterize a proof-of-concept pathway that enables microbial production of the C5 n-alkane, pentane. This pathway utilizes a soybean lipoxygenase enzyme to cleave linoleic acid to pentane and a tridecadienoic acid byproduct. Initial expression of the soybean lipoxygenase enzyme within a Yarrowia lipolytica host yielded 1.56 mg/L pentane. Efforts to improve pentane yield by increasing substrate availability and strongly overexpressing the lipoxygenase enzyme successfully increased pentane production three-fold to 4.98 mg/L. This work represents the first-ever microbial production of pentane and demonstrates that short chain n-alkane synthesis is conceivable in model cellular hosts. In this regard, we demonstrate the potential pliability of Y. lipolytica toward the biosynthetic production of value-added molecules from its generous fatty acid reserves.
完全用生物合成的方法替代石油运输燃料需要一种能够生产短链正烷烃的代谢途径。在这里,我们报告并描述了一个概念验证途径,该途径使微生物能够生产 C5 正烷烃戊烷。该途径利用大豆脂氧合酶将亚油酸裂解为戊烷和十三碳二烯酸副产物。最初在解脂耶氏酵母宿主中表达大豆脂氧合酶可产生 1.56mg/L 的戊烷。通过增加底物可用性和过表达脂氧合酶来提高戊烷产量的努力,成功地将戊烷产量提高了三倍,达到 4.98mg/L。这项工作代表了戊烷的首次微生物生产,证明了在模型细胞宿主中合成短链正烷烃是可行的。在这方面,我们证明了解脂耶氏酵母生产从其丰富的脂肪酸储备中生产有价值的分子的生物合成的潜在可塑性。