Suppr超能文献

在靶标活细胞表面构建荧光 DNA 纳米器件。

Building fluorescent DNA nanodevices on target living cell surfaces.

机构信息

Molecular Science and Biomedicine Laboratory, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha, 410082, China.

出版信息

Angew Chem Int Ed Engl. 2013 May 17;52(21):5490-6. doi: 10.1002/anie.201301439. Epub 2013 Apr 18.

Abstract

We report 1) the anchoring of preformed fluorescent DNA nanodevices (NDs) and 2) the self-assembly of fluorescent DNA NDs on target living cell surfaces. Three types of aptamer-tethered DNA NDs were built and anchored on target cell surfaces by specific target-aptamer association. The nanodevice self-assembly was further demonstrated on the surfaces of target living cells in cell mixtures. These DNA NDs exhibited fluorescence emission and underwent fluorescence energy transfer on living cell surfaces.

摘要

我们报告了 1)预先形成的荧光 DNA 纳米器件 (NDs) 的固定,以及 2)荧光 DNA NDs 在靶活细胞表面的自组装。构建了三种适体连接的 DNA NDs,并通过特定的靶适体结合固定在靶细胞表面。进一步在细胞混合物中靶活细胞表面上证明了纳米器件的自组装。这些 DNA NDs 在活细胞表面上表现出荧光发射,并发生荧光能量转移。

相似文献

1
Building fluorescent DNA nanodevices on target living cell surfaces.
Angew Chem Int Ed Engl. 2013 May 17;52(21):5490-6. doi: 10.1002/anie.201301439. Epub 2013 Apr 18.
2
Stimuli-Responsive DNA Origami Nanodevices and Their Biological Applications.
ChemMedChem. 2022 Jan 5;17(1):e202100635. doi: 10.1002/cmdc.202100635. Epub 2021 Nov 15.
3
Recent advances in self-assembled fluorescent DNA structures and probes.
Curr Top Med Chem. 2015;15(13):1162-78. doi: 10.2174/1568026615666150330110131.
4
Design of ultrasensitive DNA-based fluorescent pH sensitive nanodevices.
Nanoscale. 2015 Jun 14;7(22):10008-12. doi: 10.1039/c5nr01158b. Epub 2015 May 20.
5
A molecular recognition-activatable DNA nanofirecracker enables signal-enhanced imaging in living cells.
Chem Commun (Camb). 2020 Mar 12;56(21):3131-3134. doi: 10.1039/c9cc09682e.
6
7
Cell imaging with multi-color DNA framework probes.
Chem Commun (Camb). 2021 Oct 28;57(86):11318-11321. doi: 10.1039/d1cc04305f.
8
FRET-Mediated Observation of Protein-Triggered Conformational Changes in DNA Nanostructures.
Methods Mol Biol. 2021;2208:69-80. doi: 10.1007/978-1-0716-0928-6_5.
9
"DNA Origami Traffic Lights" with a Split Aptamer Sensor for a Bicolor Fluorescence Readout.
Nano Lett. 2017 Apr 12;17(4):2467-2472. doi: 10.1021/acs.nanolett.7b00159. Epub 2017 Mar 8.
10
Aptamer-Directed Protein-Specific Multiple Modifications of Membrane Glycoproteins on Living Cells.
ACS Appl Mater Interfaces. 2020 Aug 26;12(34):37845-37850. doi: 10.1021/acsami.0c07004. Epub 2020 Aug 13.

引用本文的文献

1
Labeling tumor-associated extracellular vesicles with antibody-DNA conjugates for quantitative analysis.
Front Mol Biosci. 2025 Jan 22;12:1531108. doi: 10.3389/fmolb.2025.1531108. eCollection 2025.
2
Cell Surface Engineering Tools for Programming Living Assemblies.
Adv Sci (Weinh). 2023 Dec;10(34):e2304040. doi: 10.1002/advs.202304040. Epub 2023 Oct 12.
3
Construction of an aflatoxin aptamer sensor based on a DNA nanoprism structure.
RSC Adv. 2022 Dec 13;12(55):35695-35702. doi: 10.1039/d2ra05881b. eCollection 2022 Dec 12.
4
6
Selection and preliminary application of a single stranded DNA aptamer targeting colorectal cancer serum.
RSC Adv. 2019 Nov 27;9(66):38867-38876. doi: 10.1039/c9ra04777h. eCollection 2019 Nov 25.
7
ExoHCR: a sensitive assay to profile PD-L1 level on tumor exosomes for immunotherapeutic prognosis.
Biophys Rep. 2020 Dec;6(6):290-298. doi: 10.1007/s41048-020-00122-x. Epub 2020 Nov 23.
8
A minimal hybridization chain reaction (HCR) system using peptide nucleic acids.
Chem Sci. 2021 May 6;12(23):8218-8223. doi: 10.1039/d1sc01269j.
10
Logic Gates Based on DNA Aptamers.
Pharmaceuticals (Basel). 2020 Nov 23;13(11):417. doi: 10.3390/ph13110417.

本文引用的文献

1
DNA-multichromophore systems.
Chem Rev. 2012 Jul 11;112(7):4221-45. doi: 10.1021/cr100351g. Epub 2012 Mar 16.
2
Challenges and opportunities for structural DNA nanotechnology.
Nat Nanotechnol. 2011 Nov 6;6(12):763-72. doi: 10.1038/nnano.2011.187.
3
Chemistry and material science at the cell surface.
Mater Today (Kidlington). 2010 Apr;13(4):14-21. doi: 10.1016/S1369-7021(10)70056-0.
4
Cell surface engineering with polyelectrolyte multilayer thin films.
J Am Chem Soc. 2011 May 11;133(18):7054-64. doi: 10.1021/ja110926s. Epub 2011 Apr 14.
5
Nanoparticles targeting dendritic cell surface molecules effectively block T cell conjugation and shift response.
ACS Nano. 2011 Mar 22;5(3):1693-702. doi: 10.1021/nn102159g. Epub 2011 Mar 4.
6
DNA-gold nanoparticle reversible networks grown on cell surface marker sites: application in diagnostics.
ACS Nano. 2011 Mar 22;5(3):2109-17. doi: 10.1021/nn1030862. Epub 2011 Feb 11.
7
A surface energy transfer nanoruler for measuring binding site distances on live cell surfaces.
J Am Chem Soc. 2010 Nov 24;132(46):16559-70. doi: 10.1021/ja106360v. Epub 2010 Nov 1.
8
Programmable in situ amplification for multiplexed imaging of mRNA expression.
Nat Biotechnol. 2010 Nov;28(11):1208-12. doi: 10.1038/nbt.1692. Epub 2010 Oct 31.
9
Label-free biological and chemical sensors.
Nanoscale. 2010 Sep;2(9):1544-59. doi: 10.1039/c0nr00201a. Epub 2010 Jun 30.
10
Therapeutic cell engineering with surface-conjugated synthetic nanoparticles.
Nat Med. 2010 Sep;16(9):1035-41. doi: 10.1038/nm.2198. Epub 2010 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验