Suppr超能文献

通过偶极场分析理解 GroEL 腔中的溶剂结构的功能。

Functional understanding of solvent structure in GroEL cavity through dipole field analysis.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.

出版信息

J Chem Phys. 2013 Apr 28;138(16):165101. doi: 10.1063/1.4801942.

Abstract

Solvent plays a ubiquitous role in all biophysical phenomena. Yet, just how the molecular nature of water impacts processes in biology remains an important question. While one can simulate the behavior of water near biomolecules such as proteins, it is challenging to gauge the potential structural role solvent plays in mediating both kinetic and equilibrium processes. Here, we propose an analysis scheme for understanding the nature of solvent structure at a local level. We first calculate coarse-grained dipole vector fields for an explicitly solvated system simulated through molecular dynamics. We then analyze correlations between these vector fields to characterize water structure under biologically relevant conditions. In applying our method to the interior of the wild type chaperonin complex GroEL+ES, along with nine additional mutant GroEL complexes, we find that dipole field correlations are strongly related to chaperonin function.

摘要

溶剂在所有生物物理现象中都起着普遍的作用。然而,水的分子性质如何影响生物学过程仍然是一个重要的问题。虽然人们可以模拟蛋白质等生物分子附近水的行为,但很难衡量溶剂在介导动力学和平衡过程中潜在的结构作用。在这里,我们提出了一种分析方案,用于了解局部水平溶剂结构的性质。我们首先为通过分子动力学模拟的明确定义的溶剂化系统计算粗粒度偶极向量场。然后,我们分析这些向量场之间的相关性,以在与生物学相关的条件下描述水的结构。在将我们的方法应用于野生型分子伴侣复合物 GroEL+ES 的内部以及另外九个突变体 GroEL 复合物时,我们发现偶极场相关性与分子伴侣的功能密切相关。

相似文献

1
Functional understanding of solvent structure in GroEL cavity through dipole field analysis.
J Chem Phys. 2013 Apr 28;138(16):165101. doi: 10.1063/1.4801942.
2
Visualizing GroEL/ES in the act of encapsulating a folding protein.
Cell. 2013 Jun 6;153(6):1354-65. doi: 10.1016/j.cell.2013.04.052.
3
Local energetic frustration affects the dependence of green fluorescent protein folding on the chaperonin GroEL.
J Biol Chem. 2017 Dec 15;292(50):20583-20591. doi: 10.1074/jbc.M117.808576. Epub 2017 Oct 24.
4
Efficient Catalysis of Protein Folding by GroEL/ES of the Obligate Chaperonin Substrate MetF.
J Mol Biol. 2020 Mar 27;432(7):2304-2318. doi: 10.1016/j.jmb.2020.02.031. Epub 2020 Mar 2.
6
GroEL assisted folding of large polypeptide substrates in Escherichia coli: Present scenario and assignments for the future.
Prog Biophys Mol Biol. 2009 Jan;99(1):42-50. doi: 10.1016/j.pbiomolbio.2008.10.007. Epub 2008 Nov 7.
7
Molecular chaperone GroEL/ES: unfolding and refolding processes.
Biochemistry (Mosc). 2013 Dec;78(13):1405-14. doi: 10.1134/S0006297913130038.
8
Binding of CXCR4 Transmembrane Peptides to the Bacterial Chaperonin GroEL.
Protein Pept Lett. 2017;24(10):962-968. doi: 10.2174/0929866524666170724162529.
10
GroEL to DnaK chaperone network behind the stability modulation of σ(32) at physiological temperature in Escherichia coli.
FEBS Lett. 2015 Dec 21;589(24 Pt B):4047-52. doi: 10.1016/j.febslet.2015.10.034. Epub 2015 Nov 9.

引用本文的文献

1
Exploring Novel Antibiotics by Targeting the GroEL/GroES Chaperonin System.
ACS Pharmacol Transl Sci. 2024 Dec 11;8(1):10-20. doi: 10.1021/acsptsci.4c00397. eCollection 2025 Jan 10.
2
Single-molecule nanopore enzymology.
Philos Trans R Soc Lond B Biol Sci. 2017 Aug 5;372(1726). doi: 10.1098/rstb.2016.0230.
3
The dynamic conformational cycle of the group I chaperonin C-termini revealed via molecular dynamics simulation.
PLoS One. 2015 Mar 30;10(3):e0117724. doi: 10.1371/journal.pone.0117724. eCollection 2015.
4
Methodologies for the analysis of instantaneous lipid diffusion in MD simulations of large membrane systems.
Faraday Discuss. 2014;169:455-75. doi: 10.1039/c3fd00145h. Epub 2014 Jun 17.

本文引用的文献

2
Revisiting the contribution of negative charges on the chaperonin cage wall to the acceleration of protein folding.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15740-5. doi: 10.1073/pnas.1204547109. Epub 2012 Sep 7.
4
A role for confined water in chaperonin function.
J Am Chem Soc. 2008 Sep 10;130(36):11838-9. doi: 10.1021/ja802248m. Epub 2008 Aug 19.
5
Potential for modulation of the hydrophobic effect inside chaperonins.
Biophys J. 2008 Oct;95(7):3391-9. doi: 10.1529/biophysj.108.131037. Epub 2008 Jul 3.
6
The origin of long-range attraction between hydrophobes in water.
Biophys J. 2007 Jan 15;92(2):373-8. doi: 10.1529/biophysj.106.087023. Epub 2006 Sep 22.
7
Relaxation processes in supercooled confined water and implications for protein dynamics.
Phys Rev Lett. 2006 Jun 23;96(24):247802. doi: 10.1103/PhysRevLett.96.247802. Epub 2006 Jun 22.
9
Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes.
J Chem Phys. 2004 Oct 22;121(16):7955-65. doi: 10.1063/1.1796271.
10
Directed evolution of substrate-optimized GroEL/S chaperonins.
Cell. 2002 Dec 27;111(7):1027-39. doi: 10.1016/s0092-8674(02)01198-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验