Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA.
J Chem Phys. 2013 Apr 28;138(16):165101. doi: 10.1063/1.4801942.
Solvent plays a ubiquitous role in all biophysical phenomena. Yet, just how the molecular nature of water impacts processes in biology remains an important question. While one can simulate the behavior of water near biomolecules such as proteins, it is challenging to gauge the potential structural role solvent plays in mediating both kinetic and equilibrium processes. Here, we propose an analysis scheme for understanding the nature of solvent structure at a local level. We first calculate coarse-grained dipole vector fields for an explicitly solvated system simulated through molecular dynamics. We then analyze correlations between these vector fields to characterize water structure under biologically relevant conditions. In applying our method to the interior of the wild type chaperonin complex GroEL+ES, along with nine additional mutant GroEL complexes, we find that dipole field correlations are strongly related to chaperonin function.
溶剂在所有生物物理现象中都起着普遍的作用。然而,水的分子性质如何影响生物学过程仍然是一个重要的问题。虽然人们可以模拟蛋白质等生物分子附近水的行为,但很难衡量溶剂在介导动力学和平衡过程中潜在的结构作用。在这里,我们提出了一种分析方案,用于了解局部水平溶剂结构的性质。我们首先为通过分子动力学模拟的明确定义的溶剂化系统计算粗粒度偶极向量场。然后,我们分析这些向量场之间的相关性,以在与生物学相关的条件下描述水的结构。在将我们的方法应用于野生型分子伴侣复合物 GroEL+ES 的内部以及另外九个突变体 GroEL 复合物时,我们发现偶极场相关性与分子伴侣的功能密切相关。