Wang Guobao, Qi Jinyi
IEEE Trans Med Imaging. 2015 Apr;34(4):930-9. doi: 10.1109/TMI.2014.2371392. Epub 2014 Nov 25.
Iterative image reconstruction for positron emission tomography can improve image quality by using spatial regularization. The most commonly used quadratic penalty often oversmoothes sharp edges and fine features in reconstructed images, while nonquadratic penalties can preserve edges and achieve higher contrast recovery. Existing optimization algorithms such as the expectation maximization (EM) and preconditioned conjugate gradient (PCG) algorithms work well for the quadratic penalty, but are less efficient for high-curvature or nonsmooth edge-preserving regularizations. This paper proposes a new algorithm to accelerate edge-preserving image reconstruction by using two strategies: trust surrogate and optimization transfer descent. Trust surrogate approximates the original penalty by a smoother function at each iteration, but guarantees the algorithm to descend monotonically; Optimization transfer descent accelerates a conventional optimization transfer algorithm by using conjugate gradient and line search. Results of computer simulations and real 3-D data show that the proposed algorithm converges much faster than the conventional EM and PCG for smooth edge-preserving regularization and can also be more efficient than the current state-of-art algorithms for the nonsmooth l1 regularization.
正电子发射断层扫描的迭代图像重建可以通过使用空间正则化来提高图像质量。最常用的二次惩罚通常会过度平滑重建图像中的锐利边缘和精细特征,而非二次惩罚可以保留边缘并实现更高的对比度恢复。现有的优化算法,如期望最大化(EM)和预处理共轭梯度(PCG)算法,对于二次惩罚效果良好,但对于高曲率或非平滑边缘保留正则化效率较低。本文提出了一种新算法,通过使用两种策略来加速边缘保留图像重建:信赖替代和优化转移下降。信赖替代在每次迭代时用一个更平滑的函数近似原始惩罚,但保证算法单调下降;优化转移下降通过使用共轭梯度和线搜索来加速传统的优化转移算法。计算机模拟和真实三维数据的结果表明,对于平滑边缘保留正则化,所提出的算法比传统的EM和PCG收敛快得多,对于非平滑的l1正则化,也比当前的先进算法更有效。